

Hydrogen-Powered Aircraft

Tony Hays Aircraft Design and Consulting <u>ahays@alum.mit.edu</u> www.adac.aero

Tony Hays Aircraft Design And Consulting <u>ahays@alum.mit.edu</u> www.adac.aero

2022-04-12 Creative Commons copyright licenses for the public: Attribution 4.0 International (CC BY 4.0) <u>https://creativecommons.org/licenses/by/4.0</u>

Tony Hays Aircraft Design And Consulting <u>ahays@alum.mit.edu</u> www.adac.aero

2022-04-12 Creative Commons.org/licenses/by/4.0 Creative commons.org/licenses/by/4.0

Tony Hays Aircraft Design And Consulting <u>ahays@alum.mit.edu</u> www.adac.aero

Creative Commons copyright license for the public: Attribution 4.0 International (CC BY 4.0) https://creative.commons.org/licenses/by/4.0

2022-04-12

Tony Hays Aircraft Design and Consulting <u>ahays@alum.mit.edu</u> www.adac.aero

2022-04-12

5

- Need for Zero-Carbon Economy
- Hydrogen vs. Batteries
- History of Hydrogen-powered Propulsion
- Hydrogen Generation, Distribution and Storage
- Applications of Hydrogen Energy
- The Future of Hydrogen
- Conclusions

The Relentless Rise of CO₂

7

2019 U.S. GHG Emissions by Sector

2022-04-12

2019 U.S. Transportation Sector GHG Emissions by Source

2022-04-12

ng

- Need for Zero-Carbon Economy
- Hydrogen vs. Batteries
- History of Hydrogen-powered Propulsion
- Hydrogen Generation, Distribution and Storage
- Applications of Hydrogen Energy
- The Future of Hydrogen
- Conclusions

Energy/Unit Weight is Important

2022-04-12

Energy/Unit Weight is Important

Jet fuel vs. H₂ Emissions

Understanding Condensation Trails

Keith Button, Curbing Contrails, AIAA Aerospace America 2021-05

2022-04-12

_____14

- Need for Zero-Carbon Economy
- Hydrogen vs. Batteries
- History of Hydrogen-powered Propulsion
- Hydrogen Generation, Distribution and Storage
- Applications of Hydrogen Energy
- The Future of Hydrogen
- Conclusions

He S-1 Turbojet

- Built in 1936, tested in April 1937
- Manufacturer: Heinkel-Hirth Mortorenbau
- Designer: Hans von Ohain
- Single-stage centrifugal compressor
- Gaseous hydrogen-powered
- Rotor radius: ~ 30 cm (1 ft)
- Thrust: ~ 250 lb (1,100 N)

IGV/blade/stator/injector sections

ADA505106 AMCs Future - Sustainable Air Mobility. A.D. Reiman.pdf

2022-04-12

16

Lockheed CL-400

- 1954-1958 •
- Design Mach 2.5 @ • 100,000 ft
- Not built, in part because of lack of H_2 infrastructure
- Demonstrated that H₂ could be handled as safely and easily as hydrocarbon fuel

ADA505106 AMCs Future - Sustainable Air Mobility. A.D. Reiman.pdf

Safety of Hydrogen vs. JP-8

For most issues of practical importance, hydrogen is safer than JP-8

Source: Reiman, A.D., "AMC's Hydrogen Future: Sustainable Air Mobility", Air Force Institute of Technology, AFIT/IMO/ENS/09-13, June 2009

Hydrogen vs JP-8 Safety		
Detonation	Gun shot tests into liquid hydrogen tanks failed to result in detonation. Heavy impact tests of liquid hydrogen tanks failed to result in detonation. Detonation of a perfect mixture of hydrogen and air only takes place with a strong detonator, but it is improbable that a perfect mixture of hydrogen and air will occur at the time of a strong detonation. JP-8 has a lower detonability limit in air as a percentage of volume than hydrogen. (Brewer, 1991)	Hydrogen
Emissivity	Hydrogen has a lower emissivity than JP-8 making the thermal radiation during a fire less. If a large hydrogen spill occurs outside an aircraft, remain inside for the heat will not be likely to enter the fuselage due to the low emissivity. (Brewer, 1991)	Hydrogen
Frost Bite	Contact with minute amounts of liquid hydrogen can lead to severe frost bite, while JP-8 poses no frostbite hazard. (Praxair, 2007)	JP-8
Fuel Spills	Hydrogen evaporates much more rapidly than JP-8 and if ignifed burns quicker than JP-8. A 12,600 kg hydrogen fuel spill will dissipate in 32 seconds, while a similar volume of JP-8 would take closer to 13 minutes. (Brewer, 1990)	Hydrogen
Ignition Temperature	Hydrogen has a higher autoignition temperature than JP-8, but a lower temperature in an air mixture. A lit cigarette will not ignite in pure hydrogen although it could light a hydrogen-air mixture. A lit cigarette could ignite JP-8. (Brewer, 1991)	JP-8
Invisible Flame	Hydrogen can be a burn hazard due to invisible flame, while JP-8 has a visible flame. (Praxair, 2007)	JP-8
Suffocation	The high diffusion rate of hydrogen can rapidly replace the oxygen in an unventilated room leading to possible suffocation, while JP-8 poses a lesser suffocation hazard. (Praxair, 2007)	JP-8
Toxicity	JP-8 is a liver toxin, kidney toxin, nerve toxin, blood toxin, lung aspiration hazard and a reproductive fetotoxin, while hydrogen is not toxic. (Dfdl, 2001).	Hydrogen

2022-04-12

2022-04-12

19

Martin B-57 Canberra

ADA505106 AMCs Future - Sustainable Air Mobility. A.D. Reiman.pdf

- First flight 1955
- NACA Lewis Flight Propulsion Laboratory
- Standard B-57 with Wright J65 engine
- Mach 0.75 @ 50,000 ft
- Switched from JP-4 to H₂
- 21 minutes on H₂
- Switched back to JP-4

LH₂-powered Tu-155

• First flight: 1988-04-15

- Fuel: LH₂ (later LNG for #3 engine only)
- Propulsion: 3 x Kuznetsov NK-8-2 (later replaced #3 with NK-88)
- NK-8-2 can also burn jet fuel
- LH₂ tank diameter 3.1 m (10 ft 2 in), length 5.4 m (17 ft 8 in), AMG6 AI alloy
- 50 mm (2 in) foamed polyurethane lagging

https://leehamnews.com/2020/07/24/bjorns-corner-the-challenges-of-hydrogen-part-1-background/

2022-04-12

21

LH₂-powered L-1011

- Circa 1976
- No carbon footprint
- Energy/unit weight (specific energy) of H₂ about 3 x that of jet fuel (excluding weight of cryogenic tank)
- Requires about 4.2 x volume for same energy
- Problems are mostly institutional

Lockheed L1011-500 with 40 ft stretch to fuselage for fore and aft cryogenic tanks

2022-04-12

For infrastructure study by Dan Brewer see https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19770003090.pdf

Space Shuttle Main Tank

Space Shuttle Initial Ascent

SRB products of combustion

- Al_2O_3 (aluminium oxide)
- AICl₃ (aluminium chloride, anti-perspirant)
- H₂0
- N₂

ADAC

2022-04-12

24

- Need for Zero-Carbon Economy
- Hydrogen vs. Batteries
- History of Hydrogen-powered Propulsion
- Hydrogen Generation, Distribution and Storage
- Applications of Hydrogen Energy
- The Future of Hydrogen
- Conclusions

Hydrogen Challenges

- Production
 - <u>Either</u> methane reformation
 - Cost of methane
 - Cost of reformation
 - Cost of disposal of CO₂
 - <u>Or</u> electrolysis
 - Cost of electricity
 - Cost of electrolysis
- Cost of H₂ distribution and storage
- Cost and energy of H₂ liquefaction
- No existing infrastructure

Typical Hydrogen Production

Step 1 Steam-methane reforming reaction $CH_4 + H_2O (+ heat) \rightarrow CO + 3H_2$

> <u>Or</u> partial oxidation of methane reaction (produces less H_2) $2CH_4 + O_2 \rightarrow 2CO + 2H_2$ (+ heat)

Step 2 Water-gas shift reaction $CO^{+}H_2O \rightarrow CO_2 + H_2$ (+ small heat)

Total GHG approx. halved

https://energy.gov/eere/fuelcells/hydrogen-production-natural-gas-reforming

Electrocatalytic H₂ Generation

- In water-gas shift reaction
- Nanometer-thin sheets of metal carbide as catalyst
 - molybdenum
 - tungsten
 - cobalt

https://scitechdaily.com/researchers-use-gelatin-to-make-powerful-new-hydrogen-fuel-catalyst/

Co-authors on the study are Lujie Yang, Buxuan Li and Minsong Wei of UC Berkeley, J. Nathan Hohman and Chenhui Zhu of Lawrence Berkeley National Lab; Wenshu Chen and Jiajun Gu of Shanghai Jiao Tong University; Xiaolong Zou and Jiaming Liang of the Shenzhen Institute; and Mohan Sanghasadasa of the U.S. Army RDECOM AMRDEC

Electrolysis of Water

https://sites.prairiesouth.ca/legacy/chemistry/chem30/6_redox/redox3_3.htm

Electrolytic Hydrogen will get Cheaper

2022-04-12

Hydrogen Challenges

- Production
 - <u>Either</u> methane reformation
 - Cost of methane
 - Cost of reformation
 - Cost of disposal of CO₂
 - Or electrolysis
 - Cost of electricity
 - Cost of electrolysis
- Cost of H₂ transportation and storage
- Cost and energy of H₂ liquefaction
- No existing infrastructure

Can you use jet fuel pipelines for hydrogen?

- In theory, yes but
 - If sent at low pressure above atmospheric, then it won't leak*, but energy flow rate is too small
 - If sent at high pressure above atmospheric, hydrogen is likely to leak
 - · If sent as liquid, then pipes would have to be thermally insulated

*In the UK, "town gas" (used up until 1967) made from coal was 50% $H_{2.}$ 35% CH_4 , 10% CO, 5% C_2H_4

Hydrogen Transmission

Even if liquified, for same flow velocity, energy flow rate (MJ/L x L/s)* is less than half that of LNG (but viscosity of LNG is higher than that of LH₂)

Probably better to produce H₂ locally using electrolysis

* watts

2022-04-12

Energy Storage

https://en.wikipedia.org/wiki/Hvdrogen-powered_aircraft

36
Typical Airplane LH₂ Tank

[©] Leehamnews.com-Bjorns Corner The challenges of Hydrogen Pat 5 The Hydrogen tank.pdf

IRAS system complexity and weight only pays off for missions > 15 hours

Reducing Distribution Cost

- 2020-09 Startup company Universal Hydrogen
 - 850 bar high pressure gas tanks, or
 - LH₂ tanks (40 hour dwell time between production and consumption)

Interchangeable gaseous or liquid-hydrogen capsules will be transported and stored on aircraft in easy-to-handle modules.

> https://aviationweek.com/sites/defa ult/files/2020-09/AWST_200914.pdf

2022-04-12

39

Universal Hydrogen

• For Dash 8-300

- 400 nmi range with gaseous H₂ tanks
- 550 nmi range with LH₂ tanks
- (Fleet average currently 300 nmi)
- Fuel tank lines through dorsal fin, external to pressure hull
- Pax seats reduced from 50 to 40
- Maintenance costs 25% lower

https://aviationweek.com/sites/default/files/2020-09/AWST_200914.pdf

Universal Hydrogen

41

H₂-powered Britten-Norman Islander

Low-cost application of H₂ propulsion

https://www.greencarcongress.com/2021/03/20210330-fresson.htr

https://www.greencarcongress.com/2021/03/20210330-fresson.html

- Pods contain compressed H₂ tanks
- · Fuel cells in rear of engine nacelles

- Project of Cranfield Aerospace
- First flight planned 2023
- Entry into service: early 2025
- Endurance: 1 hour, with 45 minutes reserves
- Projected use by Loganair (includes world's shortest scheduled flight of 1.5 minutes)

2022-04-12 Scottish islands have cheap electricity for electrolysis of water, thanks to wind farms

Nacelles with Integrated Fuel Tanks

- Removable pods include
 - Propeller
 - Electric Motor
 - Power electronics
 - LH₂ tank
 - Cooling system
 - Auxiliary equipment

ADAC

2022-04-12

Comparative Weight Analysis – Nacelle Pods

For ATR72-600 80 seats, engines develop 4 MW at takeoff. Fuel needed for max range of 800 nmi is 2,000 kg with 500 kg reserves (all weights in table shown in kg, values from Bjorn Fehrm, with mods (in red), "The challenges of hydrogen, Part 30. Integrated Nacelles)"

	Jet fuel	Burn LH ₂	Fuel cell
Electric motor			300
Turboshaft	500	500	
Inverter			200
Fuel cell			2100
Fuel	2,500	850	700
Tanks		2400	2100
Tank sealing, pumps, valves	500	250	250
Total	3,500	4,000	5,650

Weight of tanks plus additional nacelle structure

2022-04-12

For small tanks, maybe better to user compressed gaseous H_2

44

Square-Cube Law in effect

46

Square-Cube Law in effect

47

Tank Location – Short/Medium Range

© Leehamnews.com-Bjorns Corner The challenges of Hydrogen Pat 6 Tank placement.pdf

Combine aft tank with expanded fuselage crown

Tank Location – Long Range

© Leehamnews.com-Bjorns Corner The challenges of Hydrogen Pat 6 Tank placement.pdf

Forward and aft tanks with passageway for flight deck crew

Tank Location – Short Haul

For relatively low fuel fraction, ok to put tanks in aft location

Empty tank is still quite heavy, so wing must be moved aft to rebalance

© Leehamnews.com-Bjorns Corner The challenges of Hydrogen Pat 6 Tank placement.pdf

50

Airbus ZEROe Program

Credit: Airbus

51

2022-04-12

Reducing CG Travel

- Total fuel load of 4.1 t
- 1/3 of fuel in cheek tanks
- Moment arms of forward and aft tanks about aircraft CG are approximately equal
- Move nose landing gear forward under weather radar
- Move avionics bay to cockpit crown

LH₂-powered A-320

6-abreast, single aisle 160 seats, high density

Assume typical 800 nm flight segment

ADAC

53

LH₂-powered A-320 c.g. travel

- Direct combustion of H₂
- C.g. envelope for A320 -
- Assume 800 nmi stage length
- From forward tank, assume 1.4 t of LH₂ consumed during flight
- Assume c.g. at 33% MAC at start of flight
- C.g. moves forward as fuel is burned
 - Increases trim drag

Source: leehamnews.com – Bjorn's Corner "The Challenges of Hydrogen Part 18"

Comparative SFC of Kerosene and Hydrogen

	Rolls-Royce B	Value			
	SLS, 19	SLS, ISA+10C		Cruise (11 km, $M_0 = 0.8$), ISA	
	Kerosene	Hydrogen		Kerosene	Hydrogen
$F_{\rm n}$ (kN)	66.28	66.28		8.67	8.67
SFC (g/kN s)	11.273	3.979		17.910	6.365
W_2 (kg/s)	197.00	197.00		70.16	70.11
$W_{\rm fuel}$ (kg/s)	0.747	0.264		0.155	0.055
TET (K)	1507.9	1470.9		1103.7	1089.5
SEC (kJ/kN s)	485.88	477.46		772.02	763.81
SFC _{CH} /SFC _H	2.833			2.814	
SEC _{CH} /SEC _H	1.018			1.011	
(SFC _{CH} -SFC _H)/SFC _{CH} (%)	64.71			64	1.71
(Wfuel CH-Wfuel H.)/Wfuel CH (%)	64	64.71		64.71	
(SEC _{CH} -SEC _H)/SEC _{CH} (%)]	1.73		1	L.06

Corchero, G. and Montanes, "An approach to the use of hydrogen for commercial aircraft engines" Universidad Politecnica de Madrid https://oa.upm.es/5938/1/Monta%C3%B1ez_07.pdf

ADAC

2022-04-12

Safety of Hydrogen vs. JP-8

For most issues of practical importance, hydrogen is safer than JP-8

Source: Reiman, A.D., "AMC's Hydrogen Future: Sustainable Air Mobility", Air Force Institute of Technology, AFIT/IMO/ENS/09-13, June 2009

	Hydrogen vs JP-8				
Safety					
ltem	Information	Advantage			
Detonation	Gun shot tests into liquid hydrogen tanks failed to result in detonation. Heavy impact tests of liquid hydrogen tanks failed to result in detonation. Detonation of a perfect mixture of hydrogen and air only takes place with a strong detonator, but it is improbable that a perfect mixture of hydrogen and air will occur at the time of a strong detonation. JP-8 has a lower detonability limit in air as a percentage of volume than hydrogen. (Brewer, 1991)				
Emissivity	Hydrogen has a lower emissivity than JP-8 making the thermal radiation during a fire less. If a large hydrogen spill occurs outside an aircraft, remain inside for the heat will not be likely to enter the fuselage due to the low emissivity. (Brewer, 1991)	Hydrogen			
Frost Bite	Contact with minute amounts of liquid hydrogen can lead to severe frost bite, while JP-8 poses no frostbite hazard. (Praxair, 2007)	JP-8			
Fuel Spills	Hydrogen evaporates much more rapidly than JP-8 and if ignifed burns quicker than JP-8. A 12,600 kg hydrogen fuel spill will dissipate in 32 seconds, while a similar volume of JP-8 would take closer to 13 minutes. (Brewer, 1990)	Hydrogen			
lgnition Temperature	Hydrogen has a higher autoignition temperature than JP-8, but a lower temperature in an air mixture. A lit cigarette will not ignite in pure hydrogen although it could light a hydrogen-air mixture. A lit cigarette could ignite JP-8. (Brewer, 1991)	JP-8			
Invisible Flame	Hydrogen can be a burn hazard due to invisible flame, while JP-8 has a visible flame. (Praxair, 2007)	JP-8			
Suffocation	cation The high diffusion rate of hydrogen can rapidly replace the oxygen in an unventilated room leading to possible suffocation, while IP-8 poses a lesser suffocation hazard. (Praxair, 2007)				
Toxicity	JP-8 is a liver toxin, kidney toxin, nerve toxin, blood toxin, lung aspiration hazard and a reproductive fetotoxin, while hydrogen is not toxic. (Dfdl, 2001).				

2022-04-12

- Need for Zero-Carbon Economy
- Hydrogen vs. Batteries
- History of Hydrogen-powered Propulsion
- Hydrogen Generation, Distribution and Storage
- Applications of Hydrogen Energy
- The Future of Hydrogen
- Conclusions

• Applications of Hydrogen Energy

- Burn it directly with atmospheric O_2 (or LO_2) (rocket, gas turbine, or reciprocating engine)
- Combine it with atmospheric O_2 (or LO_2) in fuel cell to generate electricity
- Hybrid of direct burn and fuel cell
- Hybrid of battery and fuel cell

Boeing Phantom Eye

- LH₂ fuel
- 2 x Ford 2.3 litre gasoline engines
- Multiple turbochargers
- First flight June 2012
- Program terminated Aug 2016

Source: ainonline.com

- Claimed performance up to 4 days at up to 65,000 ft
- Payload 450 lb
- Cruise speed 150 kt
- Possibility did not meet performance goals

2022-04-12

60

H₂ Turbofan Options – Current Technology

Direct combustion of H₂ in conventional gas turbine

Combine H_2 with atmospheric O_2 in fuel cells to generate electrical power (maybe works for very long range)

Size electric power train for cruise, size core for extra power at takeoff

ADAC

61

2022-04-12

H₂ Propulsion Options – Future Technology

Direct combustion of H₂ in conventional gas turbine

Combine H_2 with atmospheric O_2 in fuel cells to generate electrical power (maybe best for very long range)

Size electric power train for cruise, size core for extra power at takeoff

2022-04-12 Fuel cell kW/kg from Kadyk, et al., "Analysis and Design of Fuel Cell Systems for Aviation", Energies 2018,11,375, 6 Feb 2018

Jet Propulsion Relative Weights

• Applications of Hydrogen Energy

- Burn it directly with atmospheric O_2 (or LO_2) (rocket, gas turbine, or reciprocating engine)
- Combine it with atmospheric O_2 (or LO_2) in fuel cell to generate electricity
- Hybrid of direct burn and fuel cell
- Hybrid of battery and fuel cell

Boeing 787-9 Typical Long Stage Length Weight Breakdown

2022-04-12

65

LH₂-powered Airbus A310

- 2000-2002 study by consortium led by Airbus
- Larger wetted area: energy consumption increases 9% -12%
- OWE increases ~ 23%
- MTOGW varies from –ve 14.8% to +ve 4.4% depending on config.
- Increase in DOC of 4%-5% due to fuel only
- No fundamental technical roadblocks

http://planetforlife.com/h2/h2vehicle.html

ADAC

Airbus A310 H₂ Cryoplane Concept

66

LH₂-powered Airbus A310

LH₂-powered Dornier 328JET

https://en.wikipedia.org/wiki/Fairchild_Dornier_328JET#/media/File:Tyrolean_Jet_Services_Do-328-300_OE-HTJ.jpg

- Do-328JET first flight on 1998-01-20
 - Jet-fuelled turbofans
- Only 110 aircraft manufactured

- DASA* study in 1995
- Direct burn of LH₂ in modified turbofans

*DASA = merger of Daimler-Benz + Messerschmitt-Bölkow-Blom + MTU

2022-04-12

68

Hydrogen-Powered Dornier 328 Secures German Funding

April 05, 2022

DLR-led project will fly a Dornier 328 modified with a hydrogen hybrid-electric propulsion

system. Credit: DLR

https://aviationweek.com/air-transport/aircraft-propulsion/hydrogen-powered-dornier-328-secures-german-funding

Direct Combustion

- Generates NO_x
- Generates more water vapor than jet fuel

Source: www.aero-news.net

Burn vaporized LH_2 in jet engines using atmospheric O_2

EU Clean Sky Program

- Clean Sky 2 started in 2014
 - Goal 20-30% reduction in CO₂ with TRL 6 in 2024
 - €4 billion (\$4.5 billion)
 - E.g. Breakthrough Laminar Aircraft Demonstrator in Europe (BLADE) (> 60 flight hours) —
- Clean Sky 3 goal is 80% reduction in CO₂ by 2050
 - Budget not yet set
 - Entry into service 2030-35
 - Reach TRL 6 by 2025-27

Credit: Airbus/S. Ramadier

ZERCE Hydrogen combustion demonstrator

- CFM (GE + Safran) will modify GE Passport engine
 - 79-84 kN thrust
 - OPR 45
 - BPR 5.6
 - Twin shaft
- 4 x 100 kg tanks of LH₂

FlyZero – Direct Burn Test Requirements

Major tests

Hydrogen gas turbine architectures are applicable to all market segments considered in FlyZero: regional, narrowbody and midsize.

2022-04-12

https://www.ati.org.uk/wp-content/uploads/2022/03/FZO-AIN-REP-0007-FlyZero-Zero-Carbon-Emission-Aircraft-Concepts.pdf

nsulting 74

FlyZero – A320 Replacement

*NASA report CR3970 'Design of Fuselage Shapes for Natural Laminar Flow

https://www.ati.org.uk/wp-content/uploads/2022/03/FZO-AIN-REP-0007-FlyZero-Zero-Carbon-Emission-Aircraft-Concepts.pdf

Fuselage And Wing Root Bending

- Engines mounted on rear fuselage induce additional wing and fuselage bending
- Made worse by
 - Stretched fuselage
 - Heavier engines

ADAC

Fuselage And Wing Root Bending

- Engines mounted on rear fuselage induce additional fuselage and wing bending
- Made worse by
 - Stretched fuselage
 - Heavier engines

- Number of DC-9s and MD-80s still operating ~ 126
- Number of 737 and A320s operating ~ 11,000

FlyZero – A320 Replacement

Narrowbody Aircraft Mission Data		Reference A320neo	Baseline A320-2030	Concept FZN-1E
	Fuel Type	Jet A-1	SAF	LH ₂
	No. of Pax @ seat pitch (in.)	180 @ 32"	180 @ 32"	180 @ 32"
Payload	Cargo (kg)	-	-	-
	Total Payload (kg)	19,400	18,795	18,795
Max. Tal	ke-Off Weight (MTOW) (tonnes)	79.0	70.6	70.7
Operc	ating Empty Weight (tonnes)	44.9	41.5	48.0
	Range (nmi)	2,495	2,400	2,400
	Total Mission Fuel Mass inc. reserves (kg)	14,753	10,312	3,903
Design Mission	Block Time (hrs)	6.0	5.8	5.8
Design Mission	Block Fuel Mass (kg)	12,184	8,439	3,283
	Block Fuel Energy (MJ)	523,912	388,194	374,262
	Energy Intensity (MJ/ASNM)	1.13	0.899	0.866
Typical Mission	Range (nmi)	850	850	850
	Total Mission Fuel Mass inc. reserves (kg)	6,638	4,902	1,800
	Block Time (hrs)	2.4	2.4	2.4
	Block Fuel Mass (kg)	4,306	3,187	1,241
	Block Fuel Energy (MJ)	185,158	146,602	141,747
	Energy Intensity (MJ/ASNM)	1.17	0.96	0.92

Fuel fraction 3.903/70.7 = 0.055

FlyZero – A320 Replacement

Narrowbody Aircraft Mission Data		Reference A320neo	Baseline A320-2030	Concept FZN-1E
Fuel Type		Jet A-1	SAF	LH ₂
	No. of Pax @ seat pitch (in.)	180 @ 32"	180 @ 32"	180 @ 32"
Payload	Cargo (kg)	-	-	-
	Total Payload (kg)	19,400	18,795	18,795
Max. Take-Off Weight (MTOW) (tonnes)		79.0	70.6	70.7
Operating Empty Weight (tonnes)		44.9	41.5	48.0
Design Mission	Range (nmi)	2,495	2,400	2,400
	Total Mission Fuel Mass inc. reserves (kg)	14,753	10,312	3,903
	Block Time (hrs)	6.0	5.8	5.8
	Block Fuel Mass (kg)	12,184	8,439	3,283
	Block Fuel Energy (MJ)	523,912	388,194	374,262
	Energy Intensity (MJ/ASNM)	1.13	0.899	0.866
Typical Mission	Range (nmi)	850	850	850
	Total Mission Fuel Mass inc. reserves (kg)	6,638	4,902	1,800
	Block Time (hrs)	2.4	2.4	2.4
	Block Fuel Mass (kg)	4,306	3,187	1,241
	Block Fuel Energy (MJ)	185,158	146,602	141,747
	Energy Intensity (MJ/ASNM)	1.17	0.96	0.92

ΔOEW = 48.0 – 41.9 = 3.1t

∆OEW/Fuel = 3.1/3.9 = 1.7

This value made worse by putting engines on rear fuselage

2022-04-12

_{ng} 79

FlyZero – 767-200ER Replacement

80

FlyZero – 767-200ER Replacement

Midsize Aircraft Mission Data		Reference B767-200ER	Baseline B767-2030	Concept FZM-1G
	Fuel Type	Jet A-1	SAF	LH ₂
	No. of Pax @ seat pitch (in.)	242 @ 32"	279 @ 32"	279 @ 32"
Payload	Cargo (kg)	10,190	0	0
	Total Payload (kg)	35,600	29,250	29,250
Max. Tal	ke-Off Weight (MTOW) (tonnes)	179.2	170.0	150.8
Operc	ating Empty Weight (tonnes)	82.4	96.5	104.8
	Range (nmi)	5,273	5,750	5,750
	Total Mission Fuel Mass inc. reserves (kg)	61,440	44,375	16,743
Decise Mission	Block Time (hrs)	11.9	12.5	12.7
Design Mission	Block Fuel Mass (kg)	54,910	40,383	15,151
	Block Fuel Energy (MJ)	2,361,130	1,857,613	1,727,214
	Energy Intensity (MJ/ASNM)	1.69	1.16	1.08
Typical Mission	Range (nmi)	3,700	3,700	3,700
	Total Mission Fuel Mass inc. reserves (kg)	42,085	28,672	11,104
	Block Time (hrs)	8.5	8.4	8.4
	Block Fuel Mass (kg)	36,190	25,138	9,677
	Block Fuel Energy (MJ)	1,556,170	1,156,348	1,103,178
	Energy Intensity (MJ/ASNM)	1.74	1.12	1.07

Fuel fraction 16.743/150.8 = 0.111

FlyZero – 767-200ER Replacement

Midsize Aircraft Mission Data		Reference B767-200ER	Baseline B767-2030	Concept FZM-1G
Fuel Type		Jet A-1	SAF	LH ₂
	No. of Pax @ seat pitch (in.)	242 @ 32"	279 @ 32"	279 @ 32"
Payload	Cargo (kg)	10,190	0	0
	Total Payload (kg)	35,600	29,250	29,250
Max. Tal	e-Off Weight (MTOW) (tonnes)	179.2	170.0	150.8
Operating Empty Weight (tonnes)		82.4	96.5	104.8
	Range (nmi)	5,273	5,750	5,750
	Total Mission Fuel Mass inc. reserves (kg)	61,440	44,375	16,743
	Block Time (hrs)	11.9	12.5	12.7
Design Mission	Block Fuel Mass (kg)	54,910	40,383	15,151
	Block Fuel Energy (MJ)	2,361,130	1,857,613	1,727,214
	Energy Intensity (MJ/ASNM)	1.69	1.16	1.08
Typical Mission	Range (nmi)	3,700	3,700	3,700
	Total Mission Fuel Mass inc. reserves (kg)	42,085	28,672	11,104
	Block Time (hrs)	8.5	8.4	8.4
	Block Fuel Mass (kg)	36,190	25,138	9,677
	Block Fuel Energy (MJ)	1,556,170	1,156,348	1,103,178
	Energy Intensity (MJ/ASNM)	1.74	1.12	1.07

ΔOEW = 104.8-96.5 = 8.3t

ΔOEW/(fuel weight) = 8.3/16.7 = 0.5

Reasonable value to use for initial sizing for transport aircraft with engines on wing

ADAC

2022-04-12

82

Square-Cube Law in effect

83

- Areas where direct burn may be inferior
 - When multiple propulsors can be used for lift augmentation, drag reduction, or S&C
 - For short-haul turboprops flying at lower Mach numbers and shorter field length requirements
 - When propulsors are small and become very inefficient due to Reynolds Number effects (e.g., light aircraft)
 - When higher efficiency of electric motors outweighs weight of fuel cell* and inverter for long range aircraft

*can expect significant decrease in fuel cell weight in future

• Applications of Hydrogen Energy

- Burn it directly with atmospheric O_2 (or LO_2) (rocket, gas turbine, or reciprocating engine)
- Combine it with atmospheric O₂ (or LO₂) in fuel cell to generate electricity
- Hybrid of direct burn and fuel cell
- Hybrid of battery and fuel cell

Toyota Mirai

Hydrogen Filling Stations in California

40-60% energy efficient (compared with i.c. engine efficiency of ~ 25%)

ADAC

Source: www.intelligent-energy.com/technology/technology-faq/

88

Hydrogen-Powered Trucks

- Trucks initially operating in Port of Los Angeles
- Operations will extend to rest of California

Alaka'i Technologies LH₂ fuel cell-powered VTOL

- MA-based (30 employees)
- Codesigned by BMW-owned Designworks
- 3 x LH₂ fuel cells
- 6 x 100 kW electric motors
- Payload: 456 kg (1000 lb)
- Range: up to 644 km (348 nmi)
- Endurance: up to 4 hours
- Speed: up to 190 km/h (103 kt)
- < 10 minute refueling time

https://www.designboom.com/technology/alakai-technologies-skai-evtol-hydrogen-fuel-cell-flying-car-03-20-2019 Courtesy of alakai'l technologies

Skai H₂-powered flying taxi

Alaka'i Technologies LH₂ fuel cell-powered VTOL

- LH₂ in 200 or 400 l double-walled SS tanks
- 4-bladed fixed pitch rotors
- Fly-by-light fiber optics-based controls for EMI and lightning protection
- Triple-redundant autopilot
- Redundant 6-rotor configuration
- Redundant fuel cells
- Airframe ballistic parachute

https://www.designboom.com/technology/alakai-technologies-skai-evtol-hydrogen-fuel-cell-flying-car-03-20-2019 Courtesy of alakai'l technologies

Skai rotor head

Alaka'i Technologies LH₂ fuel cell-powered VTOL

- Seats for 5 people (inc. pilot)
- Or 5 pax with autonomous control or ground-based pilot
- 5G wi-fi

https://www.designboom.com/technology/alakai-technologies-skai-evtol-hydrogen-fuel-cell-flying-car-03-20-2019, Courtesy of alakai'l technologies

Skai seating arrangement

FlyZero – Fuel Cell Test Requirements

Major tests

Fuel cell architectures are applicable to the regional market segment.

Figure 8 - Hydrogen fuel cell aircraft architecture - major tests.

https://www.ati.org.uk/wp-content/uploads/2022/03/FZO-AIN-REP-0007-FlyZero-Zero-Carbon-Emission-Aircraft-Concepts.pdf

https://www.ati.org.uk/wp-content/uploads/2022/03/FZO-AIN-REP-0007-FlyZero-Zero-Carbon-Emission-Aircraft-Concepts.pdf

ADAC Aircraft Design & Consulting

https://www.ati.org.uk/wp-content/uploads/2022/03/FZO-AIN-REP-0007-FlyZero-Zero-Carbon-Emission-Aircraft-Concepts.pdf

2022-04-12

- 95

Regional Aircraft Geometric Data		Reference ATR72-600	Baseline ATR72-2030	Concept FZR-1E
Fuel Type		Jet A-1	SAF	LH ₂
Overall Aircraft Length (m)		27.2	28.5	28.0
Fuedana	Length (m)	27.2	27.2	27.0
Fuseiage	Diameter (m)	2.8	2.8	3.5
	Aspect Ratio (-)	12	14	14
	Quarter-Chord Sweep (deg)	1.6	1.8	7.0
	Thickness Root/Tip (%)	18/13	18/13	18/12
Wing	Span (m)	27.1	31.3	31.0
	Area (m²)	61.0	70.0	70.8
	Loading (kg/m²)	374	368	407
	No. of Propulsors	2	2	6
Propulsors	Propeller Diameter (m)	3.9	4.0	2.3
	Nacelle Diameter (m)	1.1	1.2	0.96
Empennage	Vertical Area (m ²)	12.5	13.6	11.0
	Horizontal Area (m²)	11.6	11.9	20.2
	Horizontal Span (m)	7.3	7.4	10.7

https://www.ati.org.uk/wp-content/uploads/2022/03/FZO-AIN-REP-0007-FlyZero-Zero-Carbon-Emission-Aircraft-Concepts.pdf

Regional Aircraft Performance Data		Reference ATR72-600	Baseline ATR72-2030	Concept FZR-1E
J	Fuel Type	Jet A-1	SAF	LH ₂
Normal Take-off	Aircraft Sea Level Shaft Power (kW)	3,692	4,235	4,400
	Aircraft Power to Weight (kW/kg)	0.162	0.164	0.153
	Field Length (m)	1,240	1,201	1,387
	Aircraft Propulsive Power (kW)	1,796	2,684	3,115
	Lift to Drag Ratio (-)	16.8	15.5	15.1
Start of Cruise	Speed (ktas)	266	325	325
	Altitude (ft)	25,000	25,000	25,000
	SFC (kg/s/N) x 10-6	13.3	12.4	4.6
	EPSFC (kg/kWhe)	0.350	0.267	0.100
Landing	Approach Speed (keas)	111	109	114
	Field Length (m)	1,252	1,205	1,331

https://www.ati.org.uk/wp-content/uploads/2022/03/FZO-AIN-REP-0007-FlyZero-Zero-Carbon-Emission-Aircraft-Concepts.pdf

Regional Aircraft Mission Data		Reference ATR72-600	Baseline ATR72-2030	Concept FZR-1E
	Fuel Type	Jet A-1	SAF	LH ₂
	No. of Pax @ seat pitch (in.)	72 @ 30"	75 @ 30"	75 @ 30"
Payload	Cargo (kg)	0	0	0
	Total Payload (kg)	7,200	7,875	7,875
Max. Tal	ke-Off Weight (MTOW) (tonnes)	22.8	25.8	28.8
Operating Empty Weight (tonnes)		13.5	15.0	19.8
	Range (nmi)	448	800	800
	Total Mission Fuel Mass inc. reserves (kg)	2,156	2,954	1,158
Design Mission	Block Time (hrs)	2.1	3.0	2.9
Design Mission	Block Fuel Mass (kg)	1,381	2,115	877
	Block Fuel Energy (MJ)	59,383	97,308	105,287
	Energy Intensity (MJ/ASNM)	1.84	1.62	1.75
	Range (nmi)	375	375	375
Typical Mission	Total Mission Fuel Mass inc. reserves (kg)	1,974	1,959	730
	Block Time (hrs)	1.9	1.6	1.6
	Block Fuel Mass (kg)	1,208	1,168	470
	Block Fuel Energy (MJ)	51,951	53,708	56,436
	Energy Intensity (MJ/ASNM)	1.92	1.91	2.01

Fuel fraction 1.158/28.8 = 0.040

2022-04-12 https://www.ati.org.uk/wp-content/uploads/2022/03/FZO-AIN-REP-0007-FlyZero-Zero-Carbon-Emission-Aircraft-Concepts.pdf

• Applications of Hydrogen Energy

- Burn it directly with atmospheric O_2 (or LO_2) (rocket, gas turbine, or reciprocating engine)
- Combine it with atmospheric O_2 (or LO_2) in fuel cell to generate electricity
- Hybrid of direct burn and fuel cell
- Hybrid of battery and fuel cell

Summary of EU-commissioned report

ADAC

Source: EU Hydrogen Powered Aviaition.

2022-04-12

100

H₂ Propulsion Options – Future Technology

Direct combustion of H₂ in conventional gas turbine

Combine H_2 with atmospheric O_2 in fuel cells to generate electrical power (maybe best for very long range)

Size electric power train for cruise, size core for extra power at takeoff

2022-04-12

Fuel cell kW/kg from Kadyk, et al., "Analysis and Design of Fuel Cell Systems for Aviation", Energies 2018,11,375, 6 Feb 2018

101

• Applications of Hydrogen Energy

- Burn it directly with atmospheric O_2 (or LO_2) (rocket, gas turbine, or reciprocating engine)
- Combine it with atmospheric O_2 (or LO_2) in fuel cell to generate electricity
- Hybrid of direct burn and fuel cell
- Hybrid of battery and fuel cell

DLR/Hydrogenics/Pipistrel HY4

DLR/Hydrogenics/Pipistrel HY4

- H₂ fuel cell and battery power
- 4 seats

- Range up to 1500 km (810 nmi)
- Cruise speed 145 km/hr (78 kt)
- First flight 2016-09-29

ADAC Aircraft Design & Consulting

Boeing R&T Europe Dimona (Modified)

- Powered by hydrogen fuel cell and Li batteries (2008)
- Climb: Li battery + fuel cell
- Cruise: 20 minutes on fuel cell
- Cruise at 27 m/sec (51 kt)
- Paris Air Show 2009

Source: Wikipedia

ADAC

- Need for Zero-Carbon Economy
- Hydrogen vs. Batteries
- History of Hydrogen-powered Propulsion
- Hydrogen Generation, Distribution and Storage
- Combining Hydrogen and Oxygen
- Applications of Hydrogen Energy
- The Future of Hydrogen
- Conclusions

ASuMED Superconducting Motor

- <u>Advanced Superconducting Motor</u> <u>Experimental Demonstrator</u>
- Developed by Oswald Electromotoren
- High temperature superconductor @ 23 K (- 418 F)
- 1 mW output @ 6,000 rpm
- Specific power 20 kW/kg*
- Overall η 99.9%
 - * Compare with 5-6 kW/kg for conventional

LH₂ lines

<u> https://aviationweek.com/future-aerospace/fusure-aerospace/fusure-aerospace/fusure-aerospace/fusure-aerospace</u>

ADAC

2022-04-12

109

Summary of EUcommissioned report

- Prepared by McKinsey & Company
- Commissioned by Clean Sky 2 Joint Undertaking and Fuel Cells and Hydrogen 2 Joint Undertaking
- Published 2020-05
- H₂ combustion could reduce climate impact by 50–75%
- Fuel cell propulsion by 75-90%

2022-04-12

Comparative Cost of Synfuel and LH₂

McKinsey, Hydrogen-powered aviation, A fact-based study of the hydrogen technolog, economics, and climate impact by 2050, 2020-05

111

ADAC

2022-04-12

Hydrogen vs. Kerosene Aviation Fuel Costs and Emissions in 2040

Summary of EU-commissioned report

2022-04-12

Aggressive Sustainable Fuel Deployment

2022-04-12

114

Aspirational and Aggressive Technology Perspective

- Need for Zero-Carbon Economy
- Hydrogen vs. Batteries
- History of Hydrogen Aircraft/Spacecraft Propulsion
- Applications of Hydrogen Energy
- The Future of Hydrogen
- Conclusions

Conclusions

- For VTOL and very short-range aircraft (i.e., small fuel mass fraction), batteries may be preferred
- For H₂, hybrid gas turbine + fuel cell may offer lightest weight for short haul, lower M_{cruise} operations
- For medium and long range, H₂ direct burn is currently best solution
- If fuel cell weight can be reduced, hybrid gas turbine + fuel cell may be preferable for long haul aircraft
- ATAG goal must be achieved, zero net CO₂ is stretch goal

