

Teaching Aircraft Conceptual Design at the Undergraduate and Graduate Levels Tony Hays California State University Long Beach

This Presentation

- Review of textbooks and other supporting material
- Typical sequence of material to be presented in conceptual design course

This Presentation

- Review of textbooks and other supporting material
- Typical sequence of material to be presented in conceptual design course

Aircraft Design Textbooks

- Raymer "Aircraft Design: A Conceptual Approach" 2012
- Nicolai and Carichner "Fundamentals of Aircraft and Airship Design" (two volumes) 2010
- Schaufele "The Elements of Aircraft Preliminary Design" 2007
- Gundlach "Designing Unmanned Aircraft Systems" 2012

Other Aircraft Design Textbooks

- Roskam "Airplane Design" (eight volumes) 1986
- Torenbeek "Synthesis of Subsonic Aircraft Design" 1982
- Obert "Aerodynamic Design of Transport Aircraft" 2009
- Jenkinson, Simpkin, Rhodes "Civil Aircraft Design" 1999
- Brandt, Stiles, Bertin, Whitford "Introduction to Aeronautics: A Design Perspective" 2004
- Fielding "Introduction to Aircraft Design" 1999

Other Aircraft Design Textbooks

- Corke "Design of Aircraft" 2002
- Sforza "Commercial Aircraft Design Principles" 2014
- Torenbeek "Advanced Aircraft Design" 2103
- Kundu "Aircraft Design" 2010
- Corning "Supersonic and Subsonic, CTOL and VTOL, Airplane Design" 1979
- Stinton "The Design of the Aeroplane" 1983

Other Aircraft Design Textbooks

- Küchemann "The Aerodynamic Design of Aircraft" 2012
- Loftin "Subsonic Aircraft: Evolution and the Matching of Size to Performance" 1980
- Whitford "Design for Air Combat" 1987
- Huenecke "Modern Combat Aircraft Design" 1987

This Presentation

- Review of textbooks and other supporting material
- Typical sequence of material to be presented in conceptual design course

Countries That Don't Use Metric System

Raymer "Aircraft Design" 5th Edition

- Ch 1 Introduction
- Ch 2 Overview
- Ch 3 Sizing from a Sketch
- Ch 4 Airfoil and Wing-Tail
- Ch 5 T/W and W/S
- Ch 6 Initial Sizing
- Ch 7 Layout and Loft
- Ch 8 Special Considerations
- Ch 9 Crew, Pax and Payload
- Ch 10 & 13 Propulsion and Fuel
- Ch 11 Landing Gear and Subsystems

- Ch 12 Aerodynamics
- Ch 14 Structures and Loads
- Ch 15 Weight and Balance
- Ch 16 Stability and Control
- Ch 17 Performance and Flight Mechanics
- Ch 18 Costs
- Ch 19 Sizing and Trade Studies
- Ch 22 Unconventional Designs
- Appendix B Atmosphere
- Appendix C Airspeeds

Raymer "Aircraft Design" 5th Edition

- Ch 1 Introduction
- Ch 2 Overview
- Ch 3 Sizing from a Sketch
- Ch 4 Airfoil and Wing-Tail
- Ch 5 T/W and W/S
- Ch 6 Initial Sizing
- Ch 7 Layout and Loft
- Ch 8 Special Considerations
- Ch 9 Crew, Pax and Payload
- Ch 10 & 13 Propulsion and Fuel
- Ch 11 Landing Gear and Subsystems

- Ch 12 Aerodynamics
- Ch 14 Structures and Loads
- Ch 15 Weight and Balance
- Ch 16 Stability and Control
- Ch 17 Performance and Flight Mechanics
- Ch 18 Costs
- Ch 19 Sizing and Trade Studies
- Ch 22 Unconventional Designs
- Appendix B Atmosphere
- Appendix C Airspeeds

Blended Wing-Body

- Advantages
 - Higher L/D
 - Noise shielding of jet engines
- Disadvantages
 - Increased weight of noncylindrical passenger cabin
 - Difficult passenger access/egress

ADAC

eraft Desian & Consulting

2016-11-01

Moller Skycar

• Moller International founded in 1983

Raymer "Aircraft Design" 5th Edition

- Ch 1 Introduction
- Ch 2 Overview
- Ch 3 Sizing from a Sketch
- Ch 4 Airfoil and Wing-Tail
- Ch 5 T/W and W/S
- Ch 6 Initial Sizing
- Ch 7 Layout and Loft
- Ch 8 Special Considerations
- Ch 9 Crew, Pax and Payload
- Ch 10 & 13 Propulsion and Fuel
- Ch 11 Landing Gear and Subsystems

- Ch 12 Aerodynamics
- Ch 14 Structures and Loads
- Ch 15 Weight and Balance
- Ch 16 Stability and Control
- Ch 17 Performance and Flight Mechanics
- Ch 18 Costs
- Ch 19 Sizing and Trade Studies
- Ch 22 Unconventional Designs
- Appendix B Atmosphere
- Appendix C Airspeeds

International Standard Atmosphere

- Definition of the atmosphere
- Definition of pressure altitude
- How an altimeter works
- Impact of hot or cold day on performance and geometric altitude measurement

2016-11-01

15

ADAC

reraft Desian & Consulting

Raymer "Aircraft Design" 5th Edition

- Ch 1 Introduction
- Ch 2 Overview
- Ch 3 Sizing from a Sketch
- Ch 4 Airfoil and Wing-Tail
- Ch 5 T/W and W/S
- Ch 6 Initial Sizing
- Ch 7 Layout and Loft
- Ch 8 Special Considerations
- Ch 9 Crew, Pax and Payload
- Ch 10 & 13 Propulsion and Fuel
- Ch 11 Landing Gear and Subsystems

- Ch 12 Aerodynamics
- Ch 14 Structures and Loads
- Ch 15 Weight and Balance
- Ch 16 Stability and Control
- Ch 17 Performance and Flight Mechanics
- Ch 18 Costs
- Ch 19 Sizing and Trade Studies
- Ch 22 Unconventional Designs
- Appendix B Atmosphere
- Appendix C Airspeeds

Relationship Between TAS, EAS, and Mach Number as Fn. Of Pressure Alt

2016-11-01

17

ADAC

Aircraft Design & Consulting

DC-9 Climb Schedule

Airplane accelerating when flying at const. KEAS, must apply correction to climb thrust

FAR Part 91.117 : If $h_p < 10,000$ ft., then $V_{IAS} \le 250$ kt.

Source: Schaufele

ADAC

reraft Desian & Consulting

2016-11-01

18

Raymer "Aircraft Design" 5th Edition

- Ch 1 Introduction
- Ch 2 Overview
- Ch 3 Sizing from a Sketch
- Ch 4 Airfoil and Wing-Tail
- Ch 5 T/W and W/S
- Ch 6 Initial Sizing
- Ch 7 Layout and Loft
- Ch 8 Special Considerations
- Ch 9 Crew, Pax and Payload
- Ch 10 & 13 Propulsion and Fuel
- Ch 11 Landing Gear and Subsystems

- Ch 12 Aerodynamics
- Ch 14 Structures and Loads
- Ch 15 Weight and Balance
- Ch 16 Stability and Control
- Ch 17 Performance and Flight Mechanics
- Ch 18 Costs
- Ch 19 Sizing and Trade Studies
- Ch 22 Unconventional Designs
- Appendix B Atmosphere
- Appendix C Airspeeds

Defining Requirements

- <u>Commercial aircraft</u>: requirements defined by airlines working in concert with airframe, engine and systems manufacturers
- <u>Military aircraft</u>: requirements defined by the customer (usually the Federal Government) with contractor input
 - Interactions with contractors defined by law

ADAC

Risk Analysis

- Technical risk (Technology Readiness Level)
 - Not meeting specification and schedule (including those of team members)
- Economic risk
 - Depression
 - Fuel price
 - Exchange rates
 - Inflation
- Political risk

2016-11-01

ADAC

Aircraft Desian & Consulting

Technology Readiness Levels

 At project go-ahead, every system should be at TRL 7 or above

2016-11-01

22

ADAC

Aircraft Design & Consulting

Commercial Development Schedule

 At project go-ahead (Authority To Proceed), every system should be at TRL 7 or above

2016-11-01

Aircraft Desian & Consultina

Risk Analysis

- Examples of failure
 - Hyfil blades for R-R RB211
 - Europrop TP400-D6 engines for A400M
 - Large scale composite manufacturing for B787.

2016-11-01

Raymer "Aircraft Design" 5th Edition

- Ch 1 Introduction
- Ch 2 Overview
- Ch 3 Sizing from a Sketch
- Ch 4 Airfoil and Wing-Tail
- Ch 5 T/W and W/S
- Ch 6 Initial Sizing
- Ch 7 Layout and Loft
- Ch 8 Special Considerations
- Ch 9 Crew, Pax and Payload
- Ch 10 & 13 Propulsion and Fuel
- Ch 11 Landing Gear and Subsystems

- Ch 12 Aerodynamics
- Ch 14 Structures and Loads
- Ch 15 Weight and Balance
- Ch 16 Stability and Control
- Ch 17 Performance and Flight Mechanics
- Ch 18 Costs
- Ch 19 Sizing and Trade Studies
- Ch 22 Unconventional Designs
- Appendix B Atmosphere
- Appendix C Airspeeds

Sample Mission Profiles

Initial Sketch

- Initial trade studies
 - Planform shape
 - Cabin/Payload bay shape
 - Engine location
 - Etc.
- Select initial characteristics on competitive aircraft – T/W, W/S, TOGW

Source: www.vulcantothesky.org

ADAC

eraft Desian & Consultin

Not much like final configuration

2016-11-01

27

Initial Estimates of L/D, M, and sfc

- Estimate L/D from wing span and wetted area
- Estimate cruise Mach and sfc

2016-11-01

Source: Nicolaai/Carichner.org

ADAC

ircraft Desian & Consulting

28

Initial Estimate of Take-Off Gross Weight

Empty Weight Available

 Empty weight <u>available</u> as a function of assumed TOGW

2016-11-01

30

Empty Weight Required

 Empty weight required based on statistical weight relationship (or component weight buildup)

2016-11-01

3

ircraft Design & Consulting

Empty Weight Solution

 Minimum empty weight is at intersection of empty weight available and required

2016-11-01

reraft Desian & Consultina

Empty Weight Available

- Minimum weight for unrefueled flight across Atlantic?
- Remove crew and payload
- Fixed weights include comm/nav systems

2016-11-01

33

ADAC

reraft Desian & Consulting

Empty Weight Required

Weight **Empty Weight Required (derived** from statistical weight equation or component weight buildup) Remove cockpit Component weights independent of TOGW (e.g., cockpit, payload and payload bay bay, avionics) Component weights proportional to TOGW (e.g., wing, empennage, landing gear, engines) **Takeoff Gross Weight ADAC** 2016-11-01 Aircraft Design & Consulting

•

Sensitivity to Payload and Crew Weight

 Elimination of crew and payload reduces TOGW significantly

2016-11-01

Model Airplane Flies Across Atlantic

- TAM-5
- August, 2003
- Flew from Canada to Ireland: 1,641 nmi (3038 km)
- TOGW = 11 lb (5 kg), dry weight = 6 lb (2.7 kg)
- Nav/comm system included GPS, autopilot, remote manual control

Source: www.barnardmicrosystems.com

ADAC

Mission Sizing Program

- Excel spreadsheet for mission sizing
 - Solver for convergence of TOGW
 - Statistical weight equations for empty weight required
 - Adjust for group weight reduction factors
 - Modify spreadsheet for other points on payload-range plot

Source: Schaufele

37

ADAC

craft Desian & Consultin

Commercial aircraft group weight breakdown

Mission Sizing Program

- Excel spreadsheet for mission sizing
 - Solver for convergence of TOGW
 - Statistical weight equations for empty weight required
 - Adjust for group weight reduction factors
 - Modify spreadsheet for other points on payload-range plot

Commercial aircraft payload-range plot

Source: Schaulele

ADAC

- Ch 1 Introduction
- Ch 2 Overview
- Ch 3 Sizing from a Sketch
- Ch 4 Airfoil and Wing-Tail
- Ch 5 T/W and W/S
- Ch 6 Initial Sizing
- Ch 7 Layout and Loft
- Ch 8 Special Considerations
- Ch 9 Crew, Pax and Payload
- Ch 10 & 13 Propulsion and Fuel
- Ch 11 Landing Gear and Subsystems

- Ch 12 Aerodynamics
- Ch 14 Structures and Loads
- Ch 15 Weight and Balance
- Ch 16 Stability and Control
- Ch 17 Performance and Flight Mechanics
- Ch 18 Costs
- Ch 19 Sizing and Trade Studies
- Ch 22 Unconventional Designs
- Appendix B Atmosphere
- Appendix C Airspeeds

- Ch 1 Introduction
- Ch 2 Overview
- Ch 3 Sizing from a Sketch
- Ch 4 Airfoil and Wing-Tail
- Ch 5 T/W and W/S
- Ch 6 Initial Sizing
- Ch 7 Layout and Loft
- Ch 8 Special Considerations
- Ch 9 Crew, Pax and Payload
- Ch 10 & 13 Propulsion and Fuel
- Ch 11 Landing Gear and Subsystems

- Ch 12 Aerodynamics
- Ch 14 Structures and Loads
- Ch 15 Weight and Balance
- Ch 16 Stability and Control
- Ch 17 Performance and Flight Mechanics
- Ch 18 Costs
- Ch 19 Sizing and Trade Studies
- Ch 22 Unconventional Designs
- Appendix B Atmosphere
- Appendix C Airspeeds

Commercial Thrust/Weight vs. Wing Loading

 T_{ref} = Sea level static, standard day, all engines operating
W_{ref} = Maximum takeoff gross weight
S_{ref} = Reference wing area

Raymer: Ch 5 T/W vs. W/S Ch 17 Performance and Flight Mechanics Ch 19 Trade Studies

(W/S)ref

ADAC

eraft Design & Consultin

41

Commercial T/W vs. Wing Loading

Select configuration with reserve of wing area

If higher MTOGW is offered:

2016-11-01

- Aircraft not constrained by landing
- Extra volume available in wing fuel tanks for increased range

(W/S)ref

Military T/W vs. Wing Loading

Sizing and Performance – Military Aircraft

- Air superiority
 - High T/W, low W/S
- Bomber/strike/interceptor
 - Low T/W, high W/S

2016-11-01

ircraft Desian & Consulting

- Ch 1 Introduction
- Ch 2 Overview
- Ch 3 Sizing from a Sketch
- Ch 4 Airfoil and Wing-Tail
- Ch 5 T/W and W/S
- Ch 6 Initial Sizing
- Ch 7 Layout and Loft
- Ch 8 Special Considerations
- Ch 9 Crew, Pax and Payload
- Ch 10 & 13 Propulsion and Fuel
- Ch 11 Landing Gear and Subsystems

- Ch 12 Aerodynamics
- Ch 14 Structures and Loads
- Ch 15 Weight and Balance
- Ch 16 Stability and Control
- Ch 17 Performance and Flight Mechanics
- Ch 18 Costs
- Ch 19 Sizing and Trade Studies
- Ch 22 Unconventional Designs
- Appendix B Atmosphere
- Appendix C Airspeeds

- Ch 1 Introduction
- Ch 2 Overview
- Ch 3 Sizing from a Sketch
- Ch 4 Airfoil and Wing-Tail
- Ch 5 T/W and W/S
- Ch 6 Initial Sizing
- Ch 7 Layout and Loft
- Ch 8 Special Considerations
- Ch 9 Crew, Pax and Payload
- Ch 10 & 13 Propulsion and Fuel
- Ch 11 Landing Gear and Subsystems

- Ch 12 Aerodynamics
- Ch 14 Structures and Loads
- Ch 15 Weight and Balance
- Ch 16 Stability and Control
- Ch 17 Performance and Flight Mechanics
- Ch 18 Costs
- Ch 19 Sizing and Trade Studies
- Ch 22 Unconventional Designs
- Appendix B Atmosphere
- Appendix C Airspeeds

ADAC

eraft Desian & Consultin

Drawing Axes and Cutting Planes

- X-axis (+ve aft):
 - Cutting plane is Fuselage Station (FS)
- Y-axis (+ve to starboard):
 - Cutting plane is Butt line (BL)
- Z-axis (+ve up):

- Cutting plane is Waterline (WL)

ADAC

Third-Angle Projection Three View

Outer Mold Line (OML)

- OML is definition of the outer surface of aircraft
- Use Vehicle Scratch Pad (<u>www.openvsp.org</u>)
 - NASA open source parametric geometry
 - Large 'hangar' of existing and conceptual designs
 - Links to other analysis software, such as VSPAERO (vortex lattice solver)

ADAC

eraft Desian & Consultin

Characteristics Block

Goes in top LHS of three-view

Characteristic	Wing	Horiz. Tail	Vert. Tail
Area (sq ft)			
Aspect Ratio			
Span (ft)			
Root Chord (ft)			
Tip Chord (ft)			
Taper Ratio			
M.A.C. (ft)			
$\land @ \% chord (^{0})$			
t/c root			
t/c tip			
Dihedral (⁰)			

Design Takeoff Gross Weight (lb):

Engine Type:

Installed Takeoff Thrust SLS Std Day (lb):

2016-11-01

ADAC

Aircraft Design & Consulting

Drawing Title Block

Goes in bottom RHS of drawing

Drawing Title			
Configuration Number	Drawing Number		
Drawn By:	Approved:		
Scale:	Revision No:		
Date:	Revision Date:		
Company Name			

Source: Schaufele 2016-11-01

- Ch 1 Introduction
- Ch 2 Overview
- Ch 3 Sizing from a Sketch
- Ch 4 Airfoil and Wing-Tail
- Ch 5 T/W and W/S
- Ch 6 Initial Sizing
- Ch 7 Layout and Loft
- Ch 8 Special Considerations
- Ch 9 Crew, Pax and Payload
- Ch 10 & 13 Propulsion and Fuel
- Ch 11 Landing Gear and Subsystems

- Ch 12 Aerodynamics
- Ch 14 Structures and Loads
- Ch 15 Weight and Balance
- Ch 16 Stability and Control
- Ch 17 Performance and Flight Mechanics
- Ch 18 Costs
- Ch 19 Sizing and Trade Studies
- Ch 22 Unconventional Designs
- Appendix B Atmosphere
- Appendix C Airspeeds

- Ch 1 Introduction
- Ch 2 Overview
- Ch 3 Sizing from a Sketch
- Ch 4 Airfoil and Wing-Tail
- Ch 5 T/W and W/S
- Ch 6 Initial Sizing
- Ch 7 Layout and Loft
- Ch 8 Special Considerations
- Ch 9 Crew, Pax and Payload
- Ch 10 & 13 Propulsion and Fuel
- Ch 11 Landing Gear and Subsystems

- Ch 12 Aerodynamics
- Ch 14 Structures and Loads
- Ch 15 Weight and Balance
- Ch 16 Stability and Control
- Ch 17 Performance and Flight Mechanics
- Ch 18 Costs
- Ch 19 Sizing and Trade Studies
- Ch 22 Unconventional Designs
- Appendix B Atmosphere
- Appendix C Airspeeds

Propulsion System Choices

• What kind of engine to select

• Where to install it

54

- Ch 1 Introduction
- Ch 2 Overview
- Ch 3 Sizing from a Sketch
- Ch 4 Airfoil and Wing-Tail
- Ch 5 T/W and W/S
- Ch 6 Initial Sizing
- Ch 7 Layout and Loft
- Ch 8 Special Considerations
- Ch 9 Crew, Pax and Payload
- Ch 10 & 13 Propulsion and Fuel
- Ch 11 Landing Gear and Subsystems

- Ch 12 Aerodynamics
- Ch 14 Structures and Loads
- Ch 15 Weight and Balance
- Ch 16 Stability and Control
- Ch 17 Performance and Flight Mechanics
- Ch 18 Costs
- Ch 19 Sizing and Trade Studies
- Ch 22 Unconventional Designs
- Appendix B Atmosphere
- Appendix C Airspeeds

Lateral Tip-over Margin

- You <u>don't</u> want this to happen
- Engine run mishap at Eielson AFB (Feb 2003)
- Note axis of rotation (line between contact point on ground of NLG and starboard MLG)

Source: www.ar15.com

Lateral Tip-over Margin

- Make scrap view in plane normal to line between ground location of NLG and MLG
- Assume c.g. height of commercial aircraft is at floor level
- Max elevation of <u>forward</u> c.g. from tip-over axis
 - 54⁰ if carrier-based
 - 63⁰ for all others

ADAC

Longitudinal Tip-up Margin

- For commercial aircraft, for first estimate assume C.G. travel is 15 – 35% MAC
- Margin for tricycle layout is approximate
 - Less for unswept wing
 - More for delta wing
- For taildragger
 - More for soft field ops

Note: MLG is usually not on same buttline plane as MAC

2016-11-01

reraft Desian & Consultin

Potato Plot for Fuselage-Mounted Twin

- As passengers and cargo are loaded, c.g. moves progressively forward
- At empty weight, c.g. is close to aft limit

Source: Jenkinson, Simpkin, Rhodes

2016-11-01

ADAC

ircraft Desian & Consulting

Effect of snow on pylon and horizontal stabilizer

Source: Jeffrey Cliffe

Buffalo NY 2006

60

ADAC

reraft Desian & Consulting

Effect of Λ or AR on MLG Design

- Typical CG limits:
 - Fwd: 15% MAC
 - Aft: 35% MAC
- As Λ or AR increase, aft CG limit moves further aft relative to MLG
- As Λ increases, $\alpha_{liftoff}$ also increases, forcing MLG further aft

ADAC

Aircraft Design & Consulting

787 MLG Cant

- Ch 1 Introduction
- Ch 2 Overview
- Ch 3 Sizing from a Sketch
- Ch 4 Airfoil and Wing-Tail
- Ch 5 T/W and W/S
- Ch 6 Initial Sizing
- Ch 7 Layout and Loft
- Ch 8 Special Considerations
- Ch 9 Crew, Pax and Payload
- Ch 10 & 13 Propulsion and Fuel
- Ch 11 Landing Gear and Subsystems

- Ch 12 Aerodynamics
- Ch 14 Structures and Loads
- Ch 15 Weight and Balance
- Ch 16 Stability and Control
- Ch 17 Performance and Flight Mechanics
- Ch 18 Costs
- Ch 19 Sizing and Trade Studies
- Ch 22 Unconventional Designs
- Appendix B Atmosphere
- Appendix C Airspeeds

C_L vs. Alpha and Drag Polars

2016-11-01

64

Aircraft Design & Consulting

Comparative Drag Plots

- Obert "Aerodynamic Design of Transport Aircraft" 2009
 - Many examples of commercial aircraft drag plots
- Schaufele "The Elements of Aircraft Preliminary Design"
- Shevell "Fundamentals of Flight" 1989
 - DC-10 L/D and ML/D

ADAC

eraft Desian & Consulting

65

DC-9 ML/D vs C_L

- DC-9 airfoil is not supercritical
- (ML/D)_{max} at about M = 0.75
- (ML/D)_{max} = 11.5

2016-11-01

ADAC

Aircraft Design & Consulting

Empirical Estimate of Drag Rise

2016-11-01

68

ADAC

Aircraft Design & Consulting

Alternative Method of M_{DD} Estimation

Empirical Korn Equation applied to airfoil section

$$M_{DD} = \frac{k_a}{\cos\left(\Lambda_{\frac{c}{2}}\right)} - \frac{\overline{c}}{\cos^2\left(\Lambda_{\frac{c}{2}}\right)} - \frac{C_I}{10\cos^3\left(\Lambda_{\frac{c}{2}}\right)} - 0.025 \leftarrow$$

where

 k_a = technology factor

(=0.87 for NACA 6-series)

(=0.95 for supercritical airfoil)

For wing, divide into sections and average results <

Modified from Douglas definition of $dC_D/dM = 0.10$ to Boeing definition of $\Delta C_D = 0.0020$ for this drag rise curve

For this approximation, use average values for whole wing

ADAC

69

Spreadsheet Prediction for DC-10

2016-11-01

ADAC Aircraft Design & Consulting

Spreadsheet Prediction for DC-10

- Ch 1 Introduction
- Ch 2 Overview
- Ch 3 Sizing from a Sketch
- Ch 4 Airfoil and Wing-Tail
- Ch 5 T/W and W/S
- Ch 6 Initial Sizing
- Ch 7 Layout and Loft
- Ch 8 Special Considerations
- Ch 9 Crew, Pax and Payload
- Ch 10 & 13 Propulsion and Fuel
- Ch 11 Landing Gear and Subsystems

- Ch 12 Aerodynamics
- Ch 14 Structures and Loads
- Ch 15 Weight and Balance
- Ch 16 Stability and Control
- Ch 17 Performance and Flight Mechanics
- Ch 18 Costs
- Ch 19 Sizing and Trade Studies
- Ch 22 Unconventional Designs
- Appendix B Atmosphere
- Appendix C Airspeeds

Applications of V-n Diagram

Examples

- Providing magnitude and direction of force vectors for structural designers
- Ensuring that pilots do not exceed structural limits in flight simulator

2016-11-01

ADAC

eraft Desian & Consultin

- Ch 1 Introduction
- Ch 2 Overview
- Ch 3 Sizing from a Sketch
- Ch 4 Airfoil and Wing-Tail
- Ch 5 T/W and W/S
- Ch 6 Initial Sizing
- Ch 7 Layout and Loft
- Ch 8 Special Considerations
- Ch 9 Crew, Pax and Payload
- Ch 10 & 13 Propulsion and Fuel
- Ch 11 Landing Gear and Subsystems

- Ch 12 Aerodynamics
- Ch 14 Structures and Loads
- Ch 15 Weight and Balance
- Ch 16 Stability and Control
- Ch 17 Performance and Flight Mechanics
- Ch 18 Costs
- Ch 19 Sizing and Trade Studies
- Ch 22 Unconventional Designs
- Appendix B Atmosphere
- Appendix C Airspeeds

Weight and Balance

- For one-semester class, multi-variable empty weight equations (Raymer, Table 6.1),
- For balance, use group weights
- For passenger aircraft, generate potato plot
- For multi-semester class, use detailed weight buildup

78

ADAC

ircraft Desian & Consulting

2016-11-01

- Ch 1 Introduction
- Ch 2 Overview
- Ch 3 Sizing from a Sketch
- Ch 4 Airfoil and Wing-Tail
- Ch 5 T/W and W/S
- Ch 6 Initial Sizing
- Ch 7 Layout and Loft
- Ch 8 Special Considerations
- Ch 9 Crew, Pax and Payload
- Ch 10 & 13 Propulsion and Fuel
- Ch 11 Landing Gear and Subsystems

- Ch 12 Aerodynamics
- Ch 14 Structures and Loads
- Ch 15 Weight and Balance
- Ch 16 Stability and Control
- Ch 17 Performance and Flight Mechanics
- Ch 18 Costs
- Ch 19 Sizing and Trade Studies
- Ch 22 Unconventional Designs
- Appendix B Atmosphere
- Appendix C Airspeeds

Two Conditions for Static Stability

ADAC

reraft Design & Consulting

Estimation of V_{HT} for Transport Aircraft

2016-11-01

ADAC

reraft Desian & Consultin

Estimation of V_{HT} for Transport Aircraft

Source:Kroo AA241

ADAC Aircraft Design & Consulting

Notch Chart

- Requires analysis of stability and control requirements during different phases of flight
- Move fuselage wrt. wing so that c.g. travel fits into notch
- For multi-semester course

2016-11-01

83

ADAC

ircraft Design & Consulting

Vertical Tail Sizing Criterion (Multi-engine)

First estimate: Use V_{VT} of comparable aircraft

Second estimate: Use geometric correlation (as for $\bar{V}_{\rm HT})$

Balance engine-out yawing moment with rudder $V_{MC} \le 1.13 V_{SR}$ (stall speed in the takeoff condition) (FAR 25.149(c))

ADAC

reraft Desian & Consultin

- Ch 1 Introduction
- Ch 2 Overview
- Ch 3 Sizing from a Sketch
- Ch 4 Airfoil and Wing-Tail
- Ch 5 T/W and W/S
- Ch 6 Initial Sizing
- Ch 7 Layout and Loft
- Ch 8 Special Considerations
- Ch 9 Crew, Pax and Payload
- Ch 10 & 13 Propulsion and Fuel
- Ch 11 Landing Gear and Subsystems

- Ch 12 Aerodynamics
- Ch 14 Structures and Loads
- Ch 15 Weight and Balance
- Ch 16 Stability and Control
- Ch 17 Performance and Flight Mechanics
- Ch 18 Costs
- Ch 19 Sizing and Trade Studies
- Ch 22 Unconventional Designs
- Appendix B Atmosphere
- Appendix C Airspeeds

Master Performance Equation

For multi-semester or graduate course

2016-11-01

86

- Ch 1 Introduction
- Ch 2 Overview
- Ch 3 Sizing from a Sketch
- Ch 4 Airfoil and Wing-Tail
- Ch 5 T/W and W/S
- Ch 6 Initial Sizing
- Ch 7 Layout and Loft
- Ch 8 Special Considerations
- Ch 9 Crew, Pax and Payload
- Ch 10 & 13 Propulsion and Fuel
- Ch 11 Landing Gear and Subsystems

- Ch 12 Aerodynamics
- Ch 14 Structures and Loads
- Ch 15 Weight and Balance
- Ch 16 Stability and Control
- Ch 17 Performance and Flight Mechanics
- Ch 18 Costs
- Ch 19 Sizing and Trade Studies
- Ch 22 Unconventional Designs
- Appendix B Atmosphere
- Appendix C Airspeeds

Participate in Design-Build-Fly Competition

- AIAA DBF (<u>www.aiaadbf.org</u>). Respond to RFP with stated payload-range and other operational requirements
 - Proposal (submit in Dec. for contest downselect)
 - Design Report
 - Contest Flyoff (mid April, alternating between Wichita, KS, and Tucson, AZ)

2014 Cal State Long Beach team competing in AIAA DBF Competition

88

ADAC

raft Design & Consulting

Participate in Design-Build-Fly Competition

- SAE Aero Design (<u>http://students.sae.org/cds/aerodesign/</u>) Respond to RFP with stated payloadrange and other operational requirements
 - Design Presentation
 - Contest Flyoff (either Fort Worth, TX, or Van Nuys, CA)

Source: scienceinpoland.pap.pl

Source: www.youtube.com

The End

For more information visit www.adac.aero

Boneyard

- Aircraft layout
- TOGW
- T/W and W/S

Design refinement requires closer co-ordination with technical disciples

- Aircraft layout
- TOGW
- T/W and W/S

- Aircraft layout
- TOGW
- T/W and W/S

- Aircraft layout
- TOGW
- T/W and W/S

- Aircraft layout
- TOGW
- T/W and W/S

