Chapter 18 Cost Analysis

RAND DAPCA IV Model for Aircraft First Cost

Used for both military and commercial cost models

Establish cost estimating relationships (CERs) for:

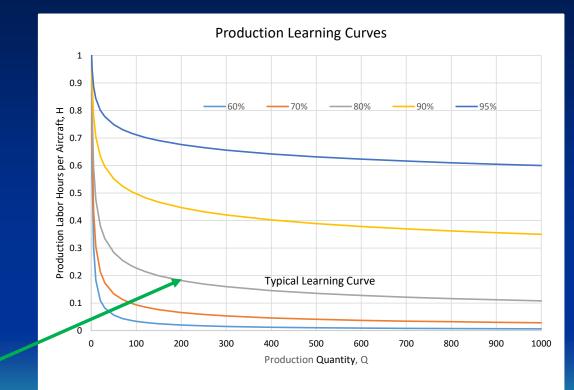
- Engineering hours (H_E)
- Tooling hours (H_T)
- Mfg. hours (H_M)
- QC hours (H_Q)

- Dev. support cost (C_D)
- Flight test cost (C_F)
- Mfg. material cost (C_M)
- Engine production cost (C_{eng})

4DAC

Production Manufacturing Hours Learning Curves

 $2^{x} = 2\left(\frac{\text{\% learning curve}}{100}\right)$ $x = \frac{\ln\left(2 \times \left(\frac{\text{\% learning curve}}{100}\right)\right)}{\ln 2}$


E.g. for 80% learning curve (typical)

$$x = \frac{\ln\left(2 \times \left(\frac{80}{100}\right)\right)}{\ln 2} = 0.678$$

Say it takes 10,000 hrs to make first aircraft For $Q_1 = 1$ $H_1 = 10,000$

$$H = H_1 \left(\frac{Q}{Q_1}\right)^{x-1}$$

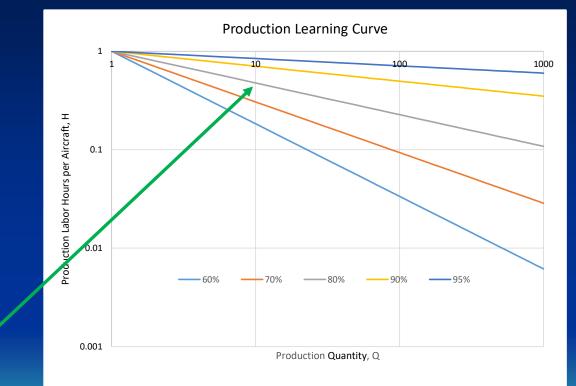
Number of hours for 200th aircraft (Q = 200) $H_{200} = 10,000 \times (200)^{0.678 - 1} = 1,815$ hrs

2023-06-29

3

Learning Curves (Log-log scale)

$$2^{x} = 2\left(\frac{\text{\%}\text{learning curve}}{100}\right)$$
$$x = \frac{\ln\left(2 \times \left(\frac{\text{\%}\text{learning curve}}{100}\right)\right)}{\ln 2}$$


E.g. for 80% learning curve (typical)

$$x = \frac{\ln\left(2 \times \left(\frac{80}{100}\right)\right)}{\ln 2} = 0.678$$

Say it takes 10,000 hrs to make first aircraft For $Q_1 = 1$ $H_1 = 10,000$

$$\boldsymbol{H} = \boldsymbol{H}_1 \left(\frac{\boldsymbol{Q}}{\boldsymbol{Q}_1} \right)^{x-1}$$

Number of hours for 200th aircraft (Q = 200) $H_{200} = 10,000 \times (200)^{0.678 - 1} = 1,815$ hrs

2023-06-29

CER Variables

Airframe:

- Empty Weight
- Max. speed
- Lesser of total production quantity or 5 year production
- No. of flight test aircraft

Engine:

 Airframe production X no. of engines/aircraft

ADAC

- Engine max. thrust
- Engine max. Mach no.
- Turbine entry temp.

2023-06-29

Total Cost

Calculate costs by factoring hours by hourly rate R_X :

- Engineering cost ($H_E R_E$)
- Tooling cost (H_T R_T)
- Mfg. cost ($H_M R_M$)
- QC cost ($H_Q R_Q$)

- Dev. support cost (C_D)
- Flight test cost (C_F)
- Mfg. material cost (C_M)
- Engine production cost (C_{eng} N_{eng})
- Avionics cost (C_{avionics})

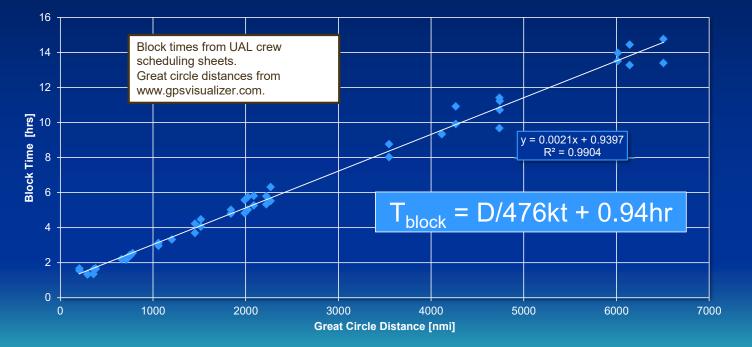
Basis of DOC+I Model

- Commercial aircraft operating cost
- Based on Direct Operating Cost + Interest (DOC+I)
- Bob Liebeck (Douglas) model "Advanced Subsonic Airplane Design and Economics Studies", NASA CR-195443, 1995
- Other inputs from Kostya Zolotusky (Boeing Capital Corporation)

Total DOC + I

Based on Air Transport Association ATA-67 method + Interest

Sum of • Fuel cost


- Flight deck and cabin crew cost
- Total airframe maintenance cost
- Total engine maintenance cost
- Landing fee
- Navigation fee (for international flights)
- Depreciation, Interest, and Insurance

Block Time Estimation

Block time vs Great Circle Distance for Selected Airport Pairs

Fuel

Fuel cost =
$$\frac{W_f}{\rho_f} \times C_f$$

$$\begin{split} W_f &= mission \ block \ fuel \ weight \ (excluding \ reserves \ [lb] \\ \rho_f &= fuel \ density \ [lb/gal]. \ Use \ 6.7 \ lb/gal \\ C_f &= fuel \ cost. \ Use \ value \ from \\ \underline{http://www.iata.org/whatwedo/economics/fuel_monitor/index.htm} \end{split}$$

Flight Deck Crew

Flight deck crew cost =
$$T_{block} \times N_{fc} \times \left(C_{fc} + 0.532 \times \frac{W_{to}}{1000}\right) \times F_{i}$$

 N_{fc} = number of flight deck crew (usually two, but three for some older airplanes, and four for transpacific flights) C_{fc} = base flight deck crew cost of \$440/hr W_{to} = maximum takeoff gross weight F_i = international salary premium (=1 for domestic, =1.1 for international flights)

Cabin Crew

Cabin crew cost = $T_{block} \times N_{cc} \times C_{cc}$

 N_{cc} = number of cabin crew. For airplanes above 100 seats = 2+[(No. of pax seats) -100]/2. For < 100 seats, see FAR Part 121.391(a) C_{cc} = base cabin crew cost of \$60/hour (domestic), or \$78/hour (international)

Airframe Maintenance Labor

Airframe maintenance labor cost

$$= \left(\left(1.26 + 1.774 \times \left(\frac{W_{airframe}}{10^5} \right) - 0.1071 \times \left(\frac{W_{airframe}}{10^5} \right)^2 \right) \times T_{block} + \left(1.614 + 0.7227 \times \left(\frac{W_{airframe}}{10^5} \right) + 0.1204 \times \left(\frac{W_{airframe}}{10^5} \right)^2 \right) \right) \times C_{ml}$$

 $W_{airframe} = W_{empty} - (dry weight of all engines)$ [lb] $C_{ml} = Direct maintenance labor cost of $25/hr$

Airframe Maintenance Material

2023-06-29

Engine Maintenance Labor

Engine maintenance labor cost =
$$\left(0.645 + \left(\frac{0.05 \times F_n}{N_e \times 10^4}\right) \times \left(0.566 + \frac{0.434}{T_{block}}\right)\right) \times T_{block} \times N_e \times C_{ml}$$

 F_n = Total net thrust at SLS for all engines N_e = Number of engines

Engine Maintenance Material

Engine maintenance material cost =
$$\left(25 + \left(\frac{0.05 \times F_n}{N_e \times 10^4}\right) \times \left(0.62 + \frac{0.38}{T_{block}}\right)\right) \times T_{block} \times N_e \times 1.47$$

 F_n = Total net thrust at SLS for all engines N_e = Number of engines

Landing Fees

Domestic Landing fee =
$$C_{land} \times \left(\frac{W_{ml}}{1000}\right)$$

International landing fee =
$$C_{land} \times \left(\frac{W_{to}}{1000}\right)$$

 C_{land} = landing fee coefficient, \$2.20 for domestic, \$6.25 for international W_{ml} = maximum landing weight

Navigation Fees

Navigation fee =
$$C_{nav} \times 500 \text{ nm} \times \sqrt{\frac{W_{to}}{1000}}$$

International flights only C_{nav} = navigation fee coefficient, assumed \$0.20

Depreciation

Depreciation per year =
$$(1 - R) \times \left(\left(\frac{C_{af}}{P_{af}} \right) + S_{af} \times \left(\frac{C_{af}}{P_{af}} \right) \right) + \left(\frac{C_{e}}{P_{e}} \right) + S_{e} \times \left(\frac{C_{e}}{P_{e}} \right)$$

 $\begin{array}{ll} \mathsf{R} &= \text{residual fraction for airframe and airframe spares} \\ \mathsf{C}_{af} &= \text{airframe cost (from Rand DAPCA model, next slide)} \\ \mathsf{P}_{af} &= \text{airframe life (nominally 15 years, but 20 to 25 years not unusual)} \\ \mathsf{C}_{e} &= \text{engine cost ($) x no. of engines. If actual not available, use Ceng from DAPCA)} \\ \mathsf{P}_{e} &= \text{engine life (assume 15 years)} \\ \mathsf{S}_{e} &= \text{engine spares (assume 0.23 x engine cost)} \end{array}$

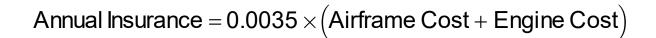
Airframe Cost

$$C_{af} = \frac{H_{E}\,R_{E} + H_{T}\,R_{T} + H_{M}\,R_{M} + H_{Q}\,R_{Q} + C_{D} + C_{F} + C_{M} + C_{av\,ionics}}{Q}$$

From Rand DAPCA model

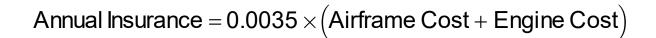
 $Depreciation per trip = \frac{Depreciation per year}{Trips per year}$

Short range aircraft = 2100 trips/year Medium range aircraft = 625 trips/year Long range aircraft = 480 trips/year

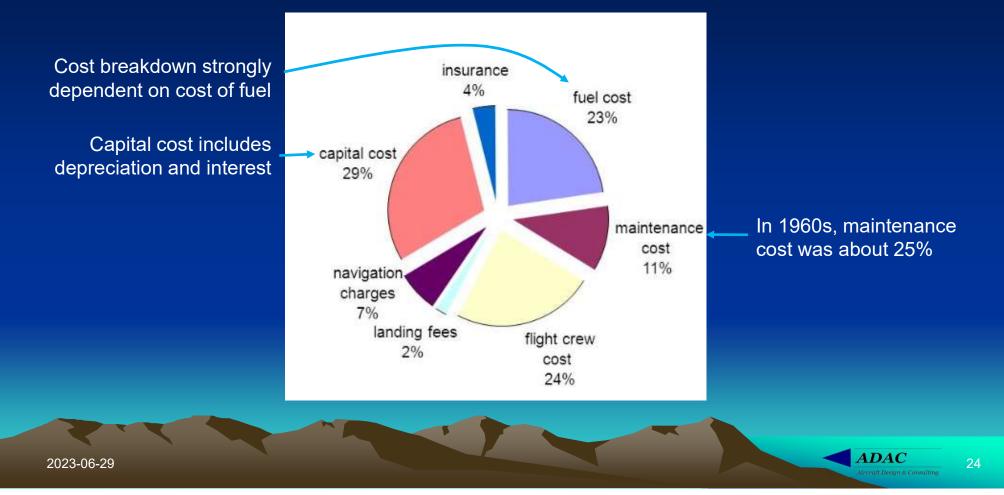

Interest

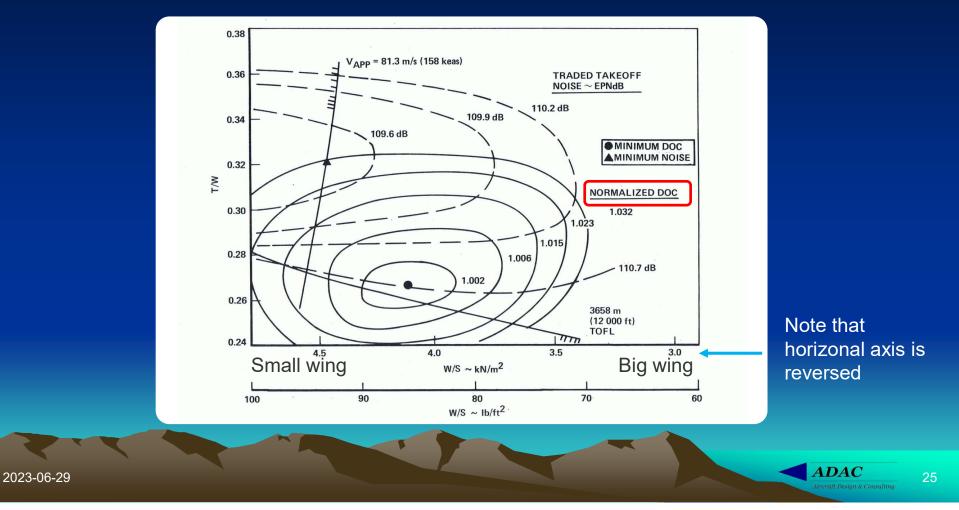
Annual Interest = Interest rate \times Loan amount

 $Interest per trip = \frac{Annual Interest Cost}{Trips per year}$


Insurance

Insurance per trip = $\frac{\text{Annual Insurance}}{\text{Trips per year}}$


Insurance


Insurance per trip = $\frac{\text{Annual Insurance}}{\text{Trips per year}}$

Typical DOC + I Breakdown

DOC Knothole Plot for SST with Noise Contours

DOC is not everything

Relative direct operating cost per seat

Must also consider

- Market fragmentation
- Frequency of flights
 between city pairs
- Airport accessibility

2023-06-29

26

Cash Operating Cost

Cash Operating Cost

Cost Analysis

