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3.4.4 L/D Estimation 
 

 Fig. 3.4.4.1  Calculating CL at Maximum Lift/Drag Ratio 
 
Ignoring compressibility effects, an aircraft drag polar (Figure 3.4.4.1) may be 
approximated as: 
 CD  C D0  KC L2                                 (3.4.4.1)                                                                   
where K is the “drag due to lift” factor, which will be introduced later in the book, and 
CD0 is the zero-lift drag. 
 
The point on the polar where CL/CD is maximized is where the tangent from the origin 
touches the curve, i.e., where the gradient of the tangent from the origin equals the 
gradient of the curve.  Thus: 
 C DC L

 dC DdC L
                               (3.4.4.2) 

Differentiating Eq. 3.4.4.1:      dC DdC L
 2KC L                (3.4.4.3) 

Thus   CDCL
 2KCL or CD  2KCL2                  (3.4.4.4) 

Inserting this back into Eq. 3.4.4.1 we have   CD 0 KC L2  , i.e., at the location on the polar 
where CL/CD is maximized, zero-lift drag is equal to drag due to lift. 
 
For the condition of maximum L/D:    CL  CD0K                  (3.4.4.5) 
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  and   L
D max

 1
2 KCD 0

                  (3.4.4.6) 
 
This is the condition for optimum endurance (e.g., when loitering), and related to the 
condition for maximum range, which is usually at a slightly lower CL for which  
L
D  0.866 L

D max
.  This latter condition arises from the requirement to maximize V(L/D) 

in the Breguet range equation, which will be discussed in the Annotation to Section 
17.2.5. 
 
 
Raymer’s Figure 3.4 shows a classic comparison between two configurations which 
could have similar mission requirements, but whose design teams took radically different 
approaches to the design (such as the Boeing B-47 and Avro Vulcan).  The delta wing 
has a much lower zero-lift drag coefficient, even though the values of (L/D)max are about 
the same.  A comparison of drag polars would look something like Fig. 3.4.4.2.  The low 
value of CDo for the delta wing is not because it has a very low drag, but rather because of 
the large value of reference wing area that is used in the denominator of the definition of 
CD. 
 

 Figure 3.4.4.2  Drag Polar Comparison: Conventional and Delta wing  
 
When flying at (L/D)max (or 0.866 (L/D)max) the delta wing is also flying at a lower cruise 
lift coefficient than the conventional wing, enabling it to fly at a higher Mach number 
before running into drag divergence.  For the Avro Vulcan, the high altitude cruise speed 
was Mach 0.947 (Ref 3.4.1). 
 
When sizing from a sketch, it is possible to get by without any knowledge of the shape of 
the drag polar.  Raymer Fig. 3.5 shows that you can estimate (L/D)max for a configuration 
using only a knowledge of the aircraft span and wetted area.   You can do this estimation 
analytically (along with assumptions about skin friction coefficient and Oswald 
efficiency factor, which will be described in Chapter 17) rather than empirically, and 
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generate results that are close to the lines that represent four of the five classes of 
airplanes shown in the figure. 
 
If we make the simplifying assumption that the airfoil is uncambered so that the drag 
polar is symmetric,  Raymer Eq. (17.14) shows that 
   
 CLmindrag 

CD0K   
 
 
By definition   CD i

K CL
2    so at this condition  CD i  K CDoK CDo (as was shown above). 

 
Thus    L

D max
 CLCD max

 1
CD

CDoK  1
2 CDo

CDoK  1
2 CDo K                 (3.4.4.7)                                             

 
K is defined as  K  1 A e    so   L

D max
 1

2 C DoA e
                                              (3.4.4.8)  

 
Also, aspect ratio  A  b2

S ref
  so  L

D max
 1

2 C D o S ref
b2 e

 b
2 C D 0

S ref
 e

              

(3.4.4.9) 
 
The equivalent skin friction coefficient (defined in Section 12.5) is Cfe, and from Raymer 
Eq. (12.23)      
C D o C f e

S wetS ref
                                                                                                            (3.4.4.10) 

 Substituting this into Eq. (3.4.4.9) above we arrive at 
 
 L

D max
 b

2 C f e
S wet

 e
                                                                                          (3.4.4.11) 

 
At this point we have to make some estimates as to the values of Cfe  and e.  We will 
assume that Cfe = 0.0026 (as shown in Table 12.3) and e = 0.8.  This will give us the 
simple result 
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 L
D max

 15.5 b
S wet

                                                                                           (3.4.4.12) 
 
This equation closely matches the line for civil jets in Raymer Fig. 3.6. 
 
For military jets we can assume that Cfe  is the average of the values for bombers and 
military transports at 0.00325 (from Table 12.3) and e = 0.8, for which we get the 
approximate result 
 
 L

D max
 14 b

S wet
                                                                                              (3.4.4.13) 

 
This equation matches the line for military jets. 
 
For retractable gear propeller-driven aircraft we will assume that Cfe = 0.0048 and e = 
0.75, for which we get the result 
 
 L

D max
 11 b

S wet
                                                                                              (3.4.4.14) 

 
This equation approximately matches the line for retractable gear propeller-driven 
aircraft.  Similar assumptions can be made to match the line for fixed gear propeller-
driven aircraft.  Jets at Mach 1.15 have the additional effect of wave drag, so simple 
assumptions about Cfe and e will no longer be applicable. 
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