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The Relentless Rise of CO2
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https://climate.nasa.gov/climate_resources/24/graphic-the-relentless-rise-of-carbon-dioxide/



2019 U.S. GHG Emissions by Sector
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Transportation 29%



2019 U.S. Transportation Sector GHG 

Emissions by Source
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Aircraft 10%

Net aircraft emissions

29% x 10% = 2.9% 
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Drag Polar
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𝑤ℎ𝑒𝑟𝑒 𝐶𝐿 =
𝐿

1
2
ρ𝑉2𝑆

and L = W

𝐶𝐷 = 𝐶𝐷0+ K𝐶𝐿
2

For an airplane, almost half the drag is directly dependent on weight

More weight > more lift req’d > more drag > 

more thrust req’d > more power req’d > more 

energy req’d > more battery weight



Energy/Unit Weight is Important
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He S-1 Turbojet
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ADA505106  AMCs Future - Sustainable Air Mobility.  A.D. Reiman.pdf

• Built in 1936, tested in April 

1937

• Manufacturer: Heinkel-Hirth

Mortorenbau

• Designer: Hans von Ohain

• Axial + centrifugal compressor

• Gaseous hydrogen-powered

• Rotor radius: ~ 30 cm (1 ft)

• Thrust: ~1,100 N (250 lb)

IGV/blade/stator/injector sections

Axial stage

Centrifugal  

stage
Radial  

turbine

Combustor

Stators



Martin B-57 Canberra
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ADA505106  AMCs Future - Sustainable Air Mobility.  A.D. Reiman.pdf

• First flight 1955

• NACA Lewis Flight 

Propulsion Laboratory

• Standard B-57 with Wright 

J65 engine

• Mach 0.75 @ 50,000 ft

• Switched from JP-4 to H2

• 21 minutes on H2

• Switched back to JP-4

Used for pressurizing LH2 

tank and purging



Lockheed CL-400

2023-03-24 19

ADA505106  AMCs Future - Sustainable Air Mobility.  A.D. Reiman.pdf

• 1956-1958

• Design Mach 2.5 @ 

100,000 ft

• Engines placed on wingtips 

to vaporize LH2 as it passed 

though hot wings

• Demonstrated that H2 could 

be handled as safely and 

easily as hydrocarbon fuel

• Not built, in part because of 

lack of H2 infrastructure

Overall length

160 ft (49 m)
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Hindenberg Disaster 
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Trenton, New Jersey  1937-05-06

Of  97 pax and crew, 62 survived

Visible flames are from burning 

cotton skin and protective ‘doping’ 

(butyrate or cellulose nitrate)



Safety of Hydrogen vs. JP-8
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For most issues of practical 

importance, hydrogen is safer 

than JP-8

Source: Reiman, A.D., “AMC’s Hydrogen Future: Sustainable Air Mobility”, 

Air Force Institute of Technology, AFIT/IMO/ENS/09-13, June 2009 



Safety of Hydrogen vs. JP-8
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For most issues 

of practical 

importance, 

hydrogen is safer 

than JP-8

Source: Reiman, A.D., “AMC’s Hydrogen 

Future: Sustainable Air Mobility”, Air Force 

Institute of Technology, AFIT/IMO/ENS/09-

13, June 2009 



Safety of Hydrogen vs. JP-8
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For most 

issues of 

practical 

importance, 

hydrogen is 

safer than JP-8

Source: Reiman, A.D., “AMC’s 

Hydrogen Future: Sustainable Air 

Mobility”, Air Force Institute of 

Technology, AFIT/IMO/ENS/09-13, 

June 2009 



LH2-powered L1011

• Circa 1976

• No carbon footprint

• Energy/unit weight (specific 

energy) of H2 about 3 x that of jet 

fuel (excluding weight of 

cryogenic tank)

• Requires about 4.2 x volume for 

same energy

• Problems are mostly institutional 
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Source: Lockheed

Lockheed L1011-500 

with 40 ft stretch to 

fuselage for fore and 

aft cryogenic tanks

LH2 tanks

For infrastructure study by Dan Brewer see 

https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19770003090.pdf



Space Shuttle Initial Ascent
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Source: nasa

H2 + O2

ammonium

perchlorate

Al NH4ClO4
(plus 12% 

polybutadiene 

acrylonitrile binder)

First operational flight 1981-04-12

Products of combustion:

Main engines

• H20

Solid Rocket Boosters (SRBs)

• Al2O3 (aluminium oxide)

• AlCl3 (aluminium chloride,  anti-

perspirant)

• H20

• N2



Space Shuttle Main Tank
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Source:science.ksc.nasa.gov



LH2-powered Tu-155
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https://leehamnews.com/2020/07/24/bjorns-corner-the-challenges-of-hydrogen-part-1-background/

• First flight:  1988-04-15

• Fuel:  LH2 (later LNG for  #3 engine 

only)

• Propulsion:  3 x Kuznetsov NK-8-2 

(later replaced #3 with NK-88)

• NK-8-2 can also burn jet fuel

• LH2 tank diameter 3.1 m (10 ft 2 in), 

length 5.4 m (17 ft 8 in), AMG6 Al 

alloy

• 50 mm (2 in) foamed polyurethane 

lagging  

https://leehamnews.com/2020/07/24/bjorns-corner-the-challenges-of-hydrogen-part-1-background/
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Hydrogen Challenges

• Production

– Either methane reformation

• Cost of methane

• Cost of reformation

• Cost of disposal of CO2

– Or electrolysis

• Cost of electricity

• Cost of electrolysis

• Cost of H2 distribution  and storage

• Cost and energy of H2 liquefaction

• No existing infrastructure

2023-03-24 30



Typical Hydrogen Production
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https://energy.gov/eere/fuelcells/hydrogen-production-natural-gas-reforming

Steam-methane reforming reaction

CH4 + H2O (+ heat) → CO + 3H2

Water-gas shift reaction

CO + H2O → CO2 + H2 (+ small heat)

Or partial oxidation of methane 

reaction (produces less H2)

2CH4 + O2 → 2CO + 2H2 (+ heat)

Step 1

Step 2

CO2 is captured and either converted into 

a solid chemical or buried
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Electrolysis of Water

https://sites.prairiesouth.ca/legacy/chemistry/chem30/6_redox/redox3_3.htm



Electrolytic Hydrogen will get Cheaper
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2020-07-04



IHCE '95. International Hydrogen and Clean Energy Symposium 
'95. (February 6-8, 1995)
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https://www.airlines.org/wp-content/uploads/2018/01/jet-fuel-1.pdf

In the US, jet fuel is sent from refinery 

to airplane mostly through pipelines



IHCE '95. International Hydrogen and Clean Energy Symposium '95. 
(February 6-8, 1995)
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https://www.airlines.org/wp-content/uploads/2018/01/jet-fuel-1.pdf



Hydrogen Challenges
• Production

– Either methane reformation

• Cost of methane

• Cost of reformation

• Cost of disposal of CO2

– Or electrolysis

• Cost of electricity

• Cost of electrolysis

• Cost of H2 transportation  and 

storage

• Cost and energy of H2 liquefaction

– About 30% of H2 energy

• No existing infrastructure
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~ 40 x higher cost



Can you use jet fuel pipelines for 

hydrogen?
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• In theory, yes – but
• If sent at low pressure above atmospheric, then it won’t leak 

significantly*, but energy flow rate is too small

• If sent at high pressure above atmospheric, hydrogen is likely to leak

• If sent as liquid, then pipes would have to be thermally insulated

*In the UK, “town gas” (used up until 1967) 

made from coal was 50% H2, 35% CH4, 10% CO, 5% C2H4

The Economist 2020/07/04



Hydrogen Transmission
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The Economist 2020/07/04

Even if liquified, for same flow velocity, energy flow rate 

of hydrogen (MJ/L x L/s)* is about 1/4 that of petrol

* i.e. MW                

Probably better to produce H2 locally using electrolysis
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The Economist 2020/07/04
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• Applications of Hydrogen Energy

– Hydrogen storage

– Energy conversion



Energy Storage
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https://en.wikipedia.org/wiki/Hydrogen-powered_aircraft
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Fuel on space shuttle solid rocket boosters

MJ/L

MJ/Kg

Energy density 

is very low

https://en.wikipedia.org/wiki/Hydrogen-powered_aircraft
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Reducing Distribution Cost

• 2020-09 Startup company 

Universal Hydrogen

– 850 bar high pressure gas tanks, or

– LH2 tanks (40 hour dwell time 

between production and 

consumption)

https://aviationweek.com/sites/defa

ult/files/2020-09/AWST_200914.pdf
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Universal Hydrogen

https://aviationweek.com/sites/default/files/2020-09/AWST_200914.pdf

• For De Havilland Dash 8-300

– 400 nmi range with gaseous H2

tanks

– 550 nmi range with LH2 tanks

– (Fleet average currently 300 nmi)

– Fuel tank lines through dorsal fin, 

external to pressure hull

• Pax seats reduced from 50 to 40

• Maintenance costs 25% lower

2 MW fuel cell 

Zero drag fuel cell 

heat exchanger 

1.6 (with APU) - 2 MW 

motor
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The Economist 2020/07/04

Dash 8  H2 Fuel Cell Testbed 

• #2 engine only.  

• First flight 2023-03-02. 

• Flight duration 15 minutes

• Inlets either side of nacelle for 

fuel cell cooling

• 560-640KW MagniX 650 motor

• Hartzell 91” propeller

• Orders for 247 conversions 

from 16 customers
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Hydrogen fuel cell

(replaces APU)

Engine or 

hydrogen fuel cell

Liquid-to-gas heat 

exchanger if boil-off 

rate is insufficient to 

run APU

Typical Airplane LH2 Tank 

© Leehamnews.com-Bjorns Corner The challenges of Hydrogen Pat 5 The Hydrogen tank.pdf 

Gaseous boil-off
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© Leehamnews.com-Bjorns Corner The challenges of Hydrogen Part 5 The Hydrogen tank.pdf 

Vacuum and/or 

foam insulation

Aluminium

tank

Integrated Refrigeration And Storage

IRAS system complexity and weight only pays off for missions > 15 hours 

Or

Two options

Maintain temp 

< 20 K
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H2-powered Britten-Norman Islander

• Project of Cranfield Aerospace

• First flight planned 2023

• Entry into service: early 2026

• Pods contain compressed H2 tanks

• Fuel cells in rear of engine nacelles
https://www.greencarcongress.com/2021/03/20210330-fresson.html

https://www.greencarcongress.com/2021/03/20210330-fresson.html

• Endurance: 1 hour, with 45 minutes reserves

• Projected use by Loganair (includes world’s 

shortest scheduled flight of 1.5 minutes) 

Scottish islands have cheap electricity for electrolysis of water, thanks to wind farms

Low-cost application of H2 propulsion
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Source: Leeham Company LLC

Nacelles with Integrated Fuel Tanks

• Removable pods include

• Propeller

• Electric Motor

• Power electronics

• LH2 tank

• Cooling system

• Auxiliary equipment
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Source: Leeham Company LLL

Gloyer-Taylor Labs Composite Tank

• Double-walled vacuum

• Length: 2.4 m

• Weight: 12 kg

• Capacity: 150 kg LH2

• Weight/Capacity: 0.08



IHCE '95. International Hydrogen and Clean Energy Symposium '95. (February 6-8, 1995)
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Square-Cube Law in effect

https://energies.airliquide.com/

resources-planet-

hydrogen/how-hydrogen-

stored#:~:text=For%20exampl

e%2C%20the%20tanks%20on

,more%20than%201.3%20mm

%20thick.

https://ntrs.nasa.gov/api/citations/20020085127/downloads/20020085127.pdf
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394 m3

Ariane LH2 tank

Excludes boiloff

249 m32 m3

Non-linear scale

Published in 2002

Gloyer Taylor 

Composite Tank*

New Atlas 

Composite Tank* *Excludes boiloff

Gomez, A. and Smith, H., 
“Liquid hydrogen fuel 
tanks for commercial 
aviation: Structural sizing 
and stress analysis”, 
Aerospace Science and 
Technology, Vol 95, Dec. 
2019

Weight of two tanks 
includes catwalk for 
forward tank

Guestimated trendline
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Tank Location – Long Range 

© Leehamnews.com-Bjorns Corner The challenges of Hydrogen Pat 6 Tank placement.pdf 

Forward and aft tanks with passageway for flight deck crew
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Tank Location – Short/Medium Range 

© Leehamnews.com-Bjorns Corner The challenges of Hydrogen Pat 6 Tank placement.pdf 

Combine aft tank with expanded fuselage crown
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Tank Location – Short/Medium Haul 

© Leehamnews.com-Bjorns Corner The challenges of Hydrogen Pat 6 Tank placement.pdf 

For relatively low fuel 

fraction, ok to put 

tanks in aft location
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Credit: Airbus

Airbus ZEROe Program
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Source: © Leeham Company LLC

LH2-powered A320

6-abreast, single aisle

160 seats, high density

Assume typical 800 nm 

(1,482 km) flight segment

Source:  leehamnews.com – Bjorn’s Corner 

“The Challenges of Hydrogen Part 18”
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Credit: Airbus

LH2-powered A320 c.g. travel

• Direct combustion of H2

• C.g. envelope for A320

• Assume 800 nmi stage length

• From forward tank, assume 1.4 t 

of LH2 consumed during flight

• Assume c.g. at 33% MAC at 

start of flight

• C.g. moves forward as fuel is 

burned

• Increases trim drag

Source:  leehamnews.com – Bjorn’s Corner 

“The Challenges of Hydrogen Part 18”

Start of mission

End of mission
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• Applications of Hydrogen Energy

– Hydrogen storage

– Energy conversion
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– Energy conversion

• Burn it directly with atmospheric O2 (or  LO2)

(reciprocating engine, gas turbine, or rocket)

• Combine it with atmospheric O2 (or LO2) in fuel 

cell to generate electricity

• Hybrid of direct burn and fuel cell

• Hybrid of battery and fuel cell



Boeing Phantom Eye
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Boeing Phantom Eye

• LH2 fuel

• 2 x Ford 2.3 litre gasoline engines

• Multiple turbochargers

• First flight June 2012

• Program terminated Aug 2016
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Source: ainonline.com

• Claimed performance up to 4 days at up to 

65,000 ft

• Payload 450 lb

• Cruise speed 150 kt

• Possibly did not meet performance goals



LH2-powered Airbus A310
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http://planetforlife.com/h2/h2vehicle.html

Airbus A310  H2 Cryoplane Concept

• 2000-2002 study by consortium led by Airbus

• Larger wetted area: energy consumption 

increases 9% -12%

• OWE increases ~ 23%

• MTOGW varies from –ve 14.8% to +ve 4.4% 

depending on config.

• Increase in DOC of 4%-5% due to fuel only

• No fundamental technical roadblocks



LH2-powered Airbus A310
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LH2

Pax + bags + Cargo

Operating

Empty 

Weight 

Cryogenic Tanks

and Structure

http://planetforlife.com/h2/h2vehicle.html

• Trade reduced LH2 weight for 

increased cryogenic tank and 

structural weight

• Not so much change in weight 

on long range flights
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Airbus ZEROe Program

• CFM (GE + Safran) will 

modify GE Passport engine

– 79-84 kN thrust

– OPR 45

– BPR 5.6

– Twin shaft 

• 4  x 100 kg tanks of LH2



FlyZero – Direct Burn Test Requirements

2023-03-24 85https://www.ati.org.uk/wp-content/uploads/2022/03/FZO-AIN-REP-0007-FlyZero-Zero-Carbon-Emission-Aircraft-Concepts.pdf



Fuselage And Wing Root Bending

• Engines mounted on rear 

fuselage induce additional 

fuselage and wing bending

• Made worse by

– Stretched fuselage

– Heavier engines

• Number of DC-9s and MD-80s still 

operating ~ 126

• Number of 737 and A320s operating ~ 

11,000
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FlyZero – A320 Replacement
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https://www.ati.org.uk/wp-content/uploads/2022/03/FZO-AIN-REP-0007-FlyZero-Zero-Carbon-Emission-Aircraft-Concepts.pdf

Payload: 75 pax @ 32” pitch

Range: 2400 nmi

TOGW: 70.6 tonnes Fuselage is tapered to 

encourage NLF*

*NASA report CR3970 ‘Design of Fuselage Shapes for Natural Laminar Flow‘

No fuel in wing, so no 

wing root bending relief

Long fuselage and rear 

engines result in high 

fuselage bending 

moments
Direct burn of H2



FlyZero – 767-200ER Replacement
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https://www.ati.org.uk/wp-content/uploads/2022/03/FZO-AIN-REP-0007-FlyZero-Zero-Carbon-Emission-Aircraft-Concepts.pdf

No fuel in wing, so wing root 

bending relief from engines only

Payload: 279 pax @ 32” pitch

Range: 5,750 nmi

TOGW: 150.8 tonnes

Direct burn of H2Tanks in blisters
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https://leehamnews.com/2022/05/06/bjorns-corner-sustainable-air-transport-part-18-advanced-hydrogen-gas-turbines/

EU ENABLEH2 Intercooled Turbine

Combustion 

chamber

IPC: Intermediate Pressure Compressor

HPC: High Pressure Compressor

HPT: High Pressure Turbine

LPT: Low Pressure Turbine

White border: hydrogen

Blue border: air for HP turbine blade cooling
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Turbine Blade Cooling

https://www.researchgate.net/figure/Turbine-

blade-with-cooling-holes_fig1_225496222

Cooling holes – early configuration Cooling holes with film cooling
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Source: Guy Norris/AW&ST

For more info   https://airinsight.com/pratt-whitney-hysiite/

Or  https://newsroom.prattwhitney.com/2022-02-21-Pratt-Whitney-Awarded-Department-of-

Energy-Project-to-Develop-Hydrogen-Propulsion-Technology

??

https://airinsight.com/pratt-whitney-hysiite/
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SWITCH Engine Concept
Sustainable Water Injection Turbofan Comprising Hybrid-Electric

https://www.militaryaerospace.com/commercial-aerospace/article/14286346/switch-project-aims-to-advance-hybrid-electric-and-water-enhanced-turbofan-tech
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• Applications of Hydrogen Energy

– Burn it directly with atmospheric O2 (or  LO2)

(rocket, gas turbine, or reciprocating engine)

– Combine it with atmospheric O2 (or LO2) in 

fuel cell to generate electricity

– Hybrid of direct burn and fuel cell

– Hybrid of battery and fuel cell
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• Applications of Hydrogen Energy

– Burn it directly with atmospheric O2 (or  LO2)

(rocket, gas turbine, or reciprocating engine)

– Combine it with atmospheric O2 (or LO2) in 

fuel cell to generate electricity

– Hybrid of direct burn and fuel cell

– Hybrid of battery and fuel cell
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• Areas where direct burn may be inferior

– When multiple propulsors can be used for lift 

augmentation, drag reduction, or S&C

– For short-haul turboprops flying at lower Mach numbers 

and shorter field length requirements

– When propulsors are small and become very inefficient 

due to Reynolds Number effects (e.g., light aircraft)

– When higher efficiency of electric motors outweighs 

weight of fuel cell* and inverter for long range aircraft

*can expect significant decrease in fuel cell weight in future



Fuel Cell Operation
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Source: www.intelligent-energy.com/technology/technology-faq/

2H2 + O2 → 4H + 2O → 4p+ + 4e- + 2O→ 2H2O

40-60% energy efficient 

(compared with i.c. engine 

efficiency of ~ 25%)



Toyota Mirai
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Source:ssl.Toyota.com

Tanks with H2

at 70 MPa 

(10,000 psi)

Fuel cell

Electric motor

Starting price ~ $50,100 

(excluding $7,500 rebate)

Range (2023 model) 400 mi 

(644 km) 

Cost of H2 ~ 17 ¢/mile

Cost of gasoline ~ 17.2  ¢/mile 

at $6/gal



Alaka’i Technologies LH2 fuel cell-powered VTOL
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https://www.designboom.com/technology/alakai-technologies-skai-evtol-hydrogen-fuel-cell-flying-car-03-20-2019/

Courtesy of alakai’I technologies

Skai H2-powered flying taxi

• MA-based (30 employees)

• Codesigned by BMW-owned Designworks

• 3 x LH2 fuel cells

• 6 x 100 kW electric motors

• Payload: 456 kg (1000 lb)

• Range: up to 644 km (348 nmi)

• Endurance: up to 4 hours

• Speed: up to 190 km/h (103 kt)

• < 10 minute refueling time

https://evtol.news/alakai-technologies-skai/

https://www.designboom.com/technology/alakai-technologies-skai-evtol-hydrogen-fuel-cell-flying-car-03-20-2019/


Jet Propulsion Relative Weights
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LH2

+LH2 tank

Gas turbine core 

(direct burn) Range

Fuel cell + inverter + motor

Component weights

MTOGW

Gas turbine system

Fuel cell system

Hybrid and/or 

future technology

At same Mcruise, fuel cell system may be 

less weight for long range design

Hybrid and/or future 

technology for fuel cells 

greatly increases their 

applicability

(red lines move down)
LH2

+LH2 tank

Fuel cell may 

be worth 

using for 

augmented 

lift for STOL 

aircraft



FlyZero - Regional Airliner
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https://www.ati.org.uk/wp-content/uploads/2022/03/FZO-AIN-REP-0007-FlyZero-Zero-Carbon-Emission-Aircraft-Concepts.pdf

Payload: 75 pax

Range: 800 nmi

Cruise speed: 325 kt

Fuel cells
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• Applications of Hydrogen Energy

– Burn it directly with atmospheric O2 (or  LO2)

(rocket, gas turbine, or reciprocating engine)

– Combine it with atmospheric O2 (or LO2) in 

fuel cell to generate electricity

– Hybrid of direct burn and fuel cell

– Hybrid of battery and fuel cell



Jet Propulsion Relative Weights
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LH2

+LH2 tank

Gas turbine core 

(direct burn) Range

Fuel cell + inverter + motor

Component weights

MTOGW

Gas turbine system

Fuel cell system

Hybrid and/or 

future technology

At same Mcruise, fuel cell system may be 

less weight for long range design

Hybrid and/or future 

technology for fuel cells 

greatly increases their 

applicability

(red lines move down)
LH2

+LH2 tank

Following two 

charts apply 

to vertical axis



H2 Propulsion Options – Current Technology

Direct combustion of H2 in 

conventional gas turbine
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H2

H2

H2

Size electric power train for cruise, 

size core for extra power at takeoff

0.9t (97%) 0.6t (97%) 5t (60%)

20t (60%)2.4t (97%)

2.25t (45%)

40MW

40MW

10MW

30MW

3.6t (97%)

3t (45%)

Example for A320 (power and weights for 

two engines). LH2 and tank weight excluded

Combine H2 with atmospheric O2 in 

fuel cells to generate electrical power

(maybe works for very long range)

0.2t

Total weight  26t

Total weight  8.95t

Weight of 

potential air 

compressor 

not included

Power

Weight (Efficiency)

Inverter weight (2 MW/ton) from Bjorn’s Corner; Fuel cell and motor kW/kg from Bjorn’s Corner

Weights for A320-sized aircraft
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Direct combustion of H2 in 

conventional gas turbine
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H2

H2

H2

Combine H2 with atmospheric O2 in 

fuel cells to generate electrical power

(maybe best for very long range)

Size electric power train for cruise, then 

size core for extra power at takeoff

0.9t (97%) 0.6t (97%) 1.25t (70%)

5t (70%)2.4t (97%)

2.25t (55%)

40MW

40MW

10MW

30MW

3.6t (97%)

3t (45%)

Example for A320 (power and weights for two 

engines). LH2 and tank weight excluded

Fuel cell kW/kg from Kadyk, et al., “Analysis and Design of Fuel Cell  

Systems for Aviation”,  Energies 2018,11,375,  6 Feb 2018

0.2t Total weight  5t

Total weight  11t Weight of 

potential air 

compressor 

not included

Power

Weight (Efficiency)



Summary of EU-commissioned report
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Source: EU Hydrogen Powered Aviaition.

• Range up to 2000 km 

and 81-250 pax create 

67% of CO2 emissions
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McKinsey, Hydrogen-powered aviation, A fact-based study of the hydrogen technology, economics, and climate impact by 2050,  2020-05

Fuel cells justified 

because of lower Mcruise, 

less sweep, smaller 

engines
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• Applications of Hydrogen Energy

– Burn it directly with atmospheric O2 (or  LO2)

(rocket, gas turbine, or reciprocating engine)

– Combine it with atmospheric O2 (or LO2) in 

fuel cell to generate electricity

– Hybrid of direct burn and fuel cell

– Hybrid of battery and fuel cell
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Source: Wikipedia

Prop Fuel Cell H2

1. Size fuel cell for cruise power 

(and use to top-up battery) 

3. Size battery to augment 

for T/O and climb 

2. Size H2 tank for 

complete mission 

Hybrid Battery and Fuel Cell

Weight of battery more than offset by reduction in weight of fuel cell



Boeing R&T Europe Dimona (Modified)
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Source: Wikipedia

• Powered by hydrogen fuel cell 

and Li batteries (2008) 

• Climb: Li battery + fuel cell

• Cruise: 20 minutes on fuel cell

• Cruise at 27 m/sec (51 kt)

• Paris Air Show 2009



Liaoning Ruixiang GA Co. RX1E-A

• Developed at Liaoning General Aviation 

Academy at Shenyang Aerospace 

University

• In 2016 tested with combined hydrogen 

and battery power

• First flight of all-electric advanced 

config.: 2017-11-01

• Characteristics
– Endurance: 60 minutes

– TOGW: 600 kg (1,320 lb)

– Two seats

– Max speed: 165 km/h (90 kt)

– Cost of electricity: ¥10/flight
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First flight of RX1E-A

Source: http://www.telegraph.co.uk/news/world/china-watch/technology/new-electric-aircraft/

辽宁锐翔通用飞机制造有限公司



Liaoning Ruixiang GA Co. RX1E-A
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辽宁锐翔通用飞机制造有限公司

RX1E

Fuel cell + battery

RX1E-A  

Battery power only
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• Need for Zero-Carbon Economy 

• Hydrogen vs. Batteries

• History of Hydrogen-powered Propulsion

• Hydrogen Generation and Distribution

• Applications of Hydrogen Energy

• The Future of Hydrogen

• Contrails

• Conclusions
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• The Future of Hydrogen

– Technology

– Reduction in Emissions



ASuMED Superconducting Motor

• Advanced Superconducting Motor 

Experimental Demonstrator

• Developed by Oswald Electromotoren

• High temperature superconductor @ 23 K 

(- 418 F)

• 1 mW output @ 6,000 rpm

• Specific power 20 kW/kg*

• Overall η 99.9%
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https://aviationweek.com/future-aerospace/full-

superconducting-motor-readied-tests* Compare with 5-6 kW/kg for conventional LH2 lines

Biggest 

benefit

Additional 

benefit

https://aviationweek.com/future-aerospace/full-superconducting-motor-readied-tests
https://aviationweek.com/future-aerospace/full-superconducting-motor-readied-tests
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• The Future of Hydrogen

– Technology

– Reduction in Emissions



Summary of EU-

commissioned report
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Combined Heat & Power 

(Cogeneration)

• Prepared by McKinsey & Company

• Commissioned by Clean Sky 2 Joint Undertaking and 

Fuel Cells and Hydrogen 2 Joint Undertaking

• Published 2020-05

• H2 combustion could reduce climate impact by 50–75%

• Fuel cell propulsion by 75-90%



Comparative Cost of Synfuel and LH2
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Assume synfuel from industry 

CO2 capture, combined with H2

McKinsey, Hydrogen-powered aviation, A fact-based study of the hydrogen technolog, economics, and climate impact by 2050,  2020-05

ME = Middle East
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McKinsey, Hydrogen-powered aviation, A fact-based study of the hydrogen technology, economics, and climate impact by 2050,  2020-05

Sustainable Aviation Fuel 

(SAF) and radical technology 

(H2 power)

IATA net-zero target 

set in 2021

IATA = International Air 

Transport Association
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• Need for Zero-Carbon Economy 

• Hydrogen vs. Batteries

• History of Hydrogen-powered Propulsion

• Hydrogen Generation and Distribution

• Applications of Hydrogen Energy

• The Future of Hydrogen

• Contrails 

• Conclusions



Jet fuel vs. H2 Emissions
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Source: Airbus Cryoplane study

Compared with jet-fueled engine:

• No CO2

• 2.6 x water vapor results in 

increased condensation trails, 

which contribute to increased 

global warming



Condensation Trails from Kerosene Fuel

https://ars.els-cdn.com/content/image/1-s2.0-S1352231020305689-fx1_lrg.jpg

149



Understanding Condensation Trails
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A NASA DC-8 with a fast forward scattering spectrometer 

probe followed a DLR A320 ATRA on nine flights over 

Germany in 2018 to measure ice particle concentrations. 

Keith Button, Curbing Contrails, AIAA Aerospace America 2021-05

Credit: DLR/NASA/Florian Friz



Condensation Trails from Jet Fuel
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Published in ‘Atmospheric Environment’, Elsevier, 2021-01-01 



Condensation Trails from Jet Fuel
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Contrail formation depends on 

atmospheric conditions

D.S. Lee, et al. ”The contribution of global aviation to anthropogenic climate forcing for 2000 to 2018”



Condensation Trails from Jet Fuel
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D.S. Lee, et al. ”The contribution of global aviation to anthropogenic climate forcing for 2000 to 2018”

!!



Condensation Trails from Jet Fuel
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https://www.transportenvironment.org/discover/airline-contrails-warm-planet-twice-much-co2-eu-study-finds/



Measuring Contrail Properties
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Credit: Christiane Voigt Credit: Christiane Voigt

Prof. Christiane Voigt at Mainz U. 

claims aircraft can avoid 80% of 

contrail-producing airspace with 

little cost

https://www.bbc.com/news/business-5876

Funded by German Aerospace Center (DLR)

Gulfstream G550 equipped 

for atmospheric research



Airbus/DLR to Evaluate Hydrogen 

Combustion Emissions
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Photo credit: James Darcy via Airbus

Purchased two Arcus J jet gliders, one with 

kerosene-fueled jet, other hydrogen-fueled jet



Airbus/DLR to Evaluate Hydrogen 

Combustion Emissions
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Grob G 520: 

• PT-6 powered long-endurance high-altitude reconnaissance (service ceiling: 50,000 ft)

• will tow gliders to altitude and carry equipment to measure jet contrail composition

Grob G 520
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• Need for Zero-Carbon Economy 

• Hydrogen vs. Batteries

• History of Hydrogen-powered Propulsion

• Hydrogen Generation and Distribution

• Applications of Hydrogen Energy

• The Future of Hydrogen

• Contrails

• Conclusions
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• For VTOL and very short-range aircraft (i.e., small fuel mass fraction), 

batteries may be preferred

• For H2, hybrid turboprop + fuel cell may offer lightest weight for short haul, 

lower Mcruise operations

• For medium and long range, H2 direct burn (i.e., gas turbine) is currently

best solution

• If fuel cell weight can be reduced, hybrid gas turbine + fuel cell may be 

preferable for long haul aircraft

• Zero net CO2 must be achieved by 2050

• Contrail formation may be as important as emissions

• There are still many unknowns

Conclusions
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Creative Commons copyright license for the public:

Attribution 4.0 International (CC BY 4.0)

https://creativecommons.org/licenses/by/4.0

Thanks for your interest

Presentation will be posted at

https://www.adac.aero/class-presentations

https://creativecommons.org/licenses/by/4.0
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