## Chapter 12 Aerodynamics



## Drag Terminology Matrix



2016-11-17

2

**ADAC** 

Aircraft Design & Consulting

## Topics in this Chapter

|                                          | Subsonic                         | Transonic                 | Supersonic                     |  |
|------------------------------------------|----------------------------------|---------------------------|--------------------------------|--|
| $C_L vs \alpha$                          | 12.4.1                           | 12.4 Mach correction      | 12.4.2                         |  |
| C <sub>Lmax</sub> (clean)                | 12.4.5                           |                           | 12.4.5                         |  |
| C <sub>Lmax</sub> (high lift<br>devices) | 12.4.6                           |                           | 12.4.6                         |  |
| Parasite Drag                            | 12.5                             | 12.5.10 M <sub>DD</sub> * | 12.5.9 Area Rule               |  |
| Drag due to lift                         | 12.6.1 Oswald<br>Span Efficiency |                           | 12.6.2 Leading<br>Edge Suction |  |

\* Includes transonic drag due to lift



High Lift Systems Zero-Lift Drag  $C_{D_0}$ Drag due to Lift  $C_{D_i}$ Wave Drag due to Volume  $C_{D_0}$ Wave Drag due to Lift  $C_{D_W}$ 





# Generation of $C_L$ vs. $\alpha$ Plot



2016-11-17

5

**ADAC** 

Aircraft Design & Consulting

### Translating $C_L$ vs. $\alpha$ Plot to FRP

Set wing on fuselage for fuselage attitude of  $2^{0}$  at typical cruise C<sub>L</sub>









#### $C_L$ vs. $\alpha$ Gradient



**ADAC** 

ircraft Design & Consulting

2016-11-17

#### Estimation of Clean $C_{L_{max}}$ with Known Airfoil Section



8

# Estimation of C<sub>Lmax</sub>

For high AR wing with moderate sweep  $C_{L_{max}} = 0.9 C_{l_{max}} \cos \Lambda_{0,25c}$ 



2016-11-17



#### A300B Flap System



#### A321 Flap System



- Double-slotted
- Extends on flap tracks



#### 737 Flap System



- Triple-slotted
- Extends on flap tracks



#### DC-9 Flap System



- Uses simple hinged flap with limited Fowler action
- Similar principle used on B787



#### 747 Variable Camber Krüger Flap System



Complex mechanical linkage



#### B787 Flap System



15

#### High-Lift System Performance





ADAC Aircraft Design & Consulting

2016-11-17

High Lift Systems Zero-Lift Drag  $C_{D_0}$ Drag due to Lift  $C_{D_i}$ Wave Drag due to Volume  $C_{D_0}$ Wave Drag due to Lift  $C_{D_W}$ 



# Quick Method for Estimating $C_{D_o}$

#### Equivalent Skin Friction Method:

For a <u>flat plate</u> with surface parallel to flow

 $D = C_f q S$ 

#### where

 $C_{f} = skin friction coefficient$ 

S = area

#### For an airplane

 ${\sf D}_{\sf o} = {\sf C}_{\sf f_e} \: {\sf q} \: {\sf S}_{\sf w \: {\sf et}}$ 

where

 $C_{f_a} = equivalentskin friction coefficient$ 

 $S_{wet}$  = airplane wetted area

$$\Rightarrow C_{D_o} = \frac{D_o}{qS_{ref}} = C_{f_e} \frac{S_{wet}}{S_{ref}}$$

| Aircraft type                  | ∕ C <sub>fe</sub> |  |  |
|--------------------------------|-------------------|--|--|
| Civil transport                | 0.0026            |  |  |
| Bomber                         | 0.0030            |  |  |
| Military cargo                 | 0.0035            |  |  |
| Air Force fighter              | 0.0035            |  |  |
| Navy fighter                   | 0.0040            |  |  |
| Supersonic cruise aircraft     | 0.0025            |  |  |
| Light aircraft - single engine | 0.0055            |  |  |
| Light aircraft - twin engine   | 0.0045            |  |  |
| Seaplane - propeller driven    | 0.0065            |  |  |
| Seaplane - jet                 | 0.0040            |  |  |

Source: Raymer (with modification)

ADAC

eraft Desian & Consultin

2016-11-17

18

#### Zero Lift Drag ( $C_{D_{O}}$ ) Calculation (Incomp. Flow)

- Also called "parasite" drag (because you can't get rid of it)
- Defined as

 $\begin{array}{l} C_{D_{o}} = C_{D_{streamlined}} + C_{D_{misc}} + C_{D_{L\&P}} \\ \text{where} \\ C_{D_{streamlined}} \\ C_{D_{misc}} \\ C_{D_{L\&P}} \end{array} = \text{Zero lift drag coeff due to streamlined components} \\ = \text{Zero lift drag coeff due to misc bluff assemblies} \\ = \text{Zero lift drag coeff due to leakage and protuberances} \end{array}$ 



#### **Component Definitions**

- Streamlined components are defined as objects for which skin friction drag dominates (e.g., wing, fuselage, horizontal and vertical tail, nacelles, pylons, etc.)
- Miscellaneous components are defined as bluff objects for which pressure drag dominates (e.g., wheels and struts, wire bracing, hemispherical protrusion on side, top, or bottom of fuselage, etc.)



#### Drag of Streamwise Flat Plate



2016-11-17

21

**ADAC** 

reraft Design & Consulting

## Summing Values of D/q

Considering skin friction only, the sum of  $(C_{D_0})_c$  for all components would be  $\sum_{c=1}^{n} \frac{C_{f_c} S_{wet_c}}{S_{ref}}$ where c refers to an aircraft component n = number of components



By including b.l. displacement effects, we must deal with form drag and interference drag · For each component, c, we factor the value of  $(C_{D_0})_c$  by an empirical form factor, FF<sub>c</sub>, and (where appropriate) an empirical interference factor Q<sub>c</sub> So  $\sum (C_{D_0})_{comp} = \sum_{c=1}^{n} \frac{(C_{f_c} S_{wet_c} FF_c Q_c)}{S_{ref}}$ 

Boundary layer growth: pressure distribution is that of a body that is <u>not</u> closed (i.e. resolving D'Alembert's Paradox).

Aggravated if separation occurs

2016-11-17

ADAC

#### Form Factors

#### For wing, tail, strut and pylon

$$\mathsf{FF} = \left(1 + \frac{0.6}{\left(\frac{x}{c}\right)_{\mathsf{m}}} \left(\frac{t}{c}\right) + 100 \left(\frac{t}{c}\right)^{4}\right) \left(1.34 \,\mathsf{M}^{0.18} \left(\cos\Lambda_{\mathsf{m}}\right)^{0.28}\right)$$

where

$$\left(\frac{x}{c}\right)_{m}$$
 = chordwise location of the airfoil maximum

thickness point

$$\left(\frac{t}{c}\right)$$
 = average  $\frac{thickness}{chord}$  ratio

 $\Lambda_{\rm m}\,{=}\,$  sweep of the maximum thickness line

For fuselage and smooth canopy

$$\mathsf{FF} = \left(1 + \frac{60}{\mathsf{f}^3} + \frac{\mathsf{f}}{400}\right)$$

For nacelle and smooth external store  $FF = 1 + \frac{0.35}{f}$  where

f = fineness ratio, defined as

$$f = \frac{I}{d} = \frac{I}{\sqrt{\frac{4}{\pi} A_{max}}}$$

where

I = component length

 $d = component \, diameter$ 

For a nacelle  $A_{max} = \frac{\pi}{4} \left( D_{nac}^2 - D_h^2 \right)$ 

 $D_{nac}$  = nacelle max diameter  $D_{h}$  = nacelle highlight diameter



**ADAC** 

Aircraft Design & Consulting

#### **Interference Factors**

| Condition                                                              | Q         |
|------------------------------------------------------------------------|-----------|
| Nacelle or external store mounted directly on fuselage or wing         | 1.5       |
| Nacelle or external store less than one diameter from fuselage or wing | 1.3       |
| Nacelle or external store more than one diameter from fuselage or wing | 1.0       |
| Wingtip-mounted missiles                                               | 1.25      |
| High wing, mid wing or well-filleted low wing                          | 1.0       |
| Unfilleted low wing                                                    | 1.1-1.4   |
| Conventional tail                                                      | 1.04-1.05 |
| V-tail                                                                 | 1.03      |
| H-tail                                                                 | 1.08      |

For more information see Hoerner Chapter VIII Interference Drag

Source: Raymer

**ADAC** 

Aircraft Design & Consulting

2016-11-17

#### Flat Plate Skin Friction Coefficient

For laminar flow  $C_{f} = \frac{1.328}{\sqrt{R_{n}}}$ For turbulent flow  $C_{f} = \frac{0.455}{(\log_{10}R_{n})^{2.58}(1+0.144M^{2})^{0.65}}$ where  $R_{n} = \frac{\rho VI}{\mu}$ I = characteristic length i.e. • mac of lifting surface, • length of fuselage • average chord of pylon For large airplanes, flow is nearly

always turbulent

2016-11-17



#### Miscellaneous Components

Calculate component  $\frac{D}{q}$ based on frontal area Sum the values of  $\frac{D}{q}$ and divide by airplane reference area  $\frac{n}{q}(D)$  1

 $C_{D_{msic}} = \sum_{c=1}^{n} \left( \frac{D}{q} \right)_{c} \frac{1}{S_{ref}}$ 



| Component                                                      | D/q per unit<br>frontal area |
|----------------------------------------------------------------|------------------------------|
| Wheel and tire                                                 | 0.25                         |
| Second wheel in tandem                                         | 0.15                         |
| Streamlined wheel and tire                                     | 0.18                         |
| Wheel and tire with fairing                                    | 0.13                         |
| Streamlined strut (0.17 <t c<0.33)<="" td=""><td>0.05</td></t> | 0.05                         |
| Round strut or wire                                            | 0.30 *                       |
| Flat spring gear leg                                           | 1.40                         |
| Fork, bogey, irregular fitting                                 | 1.0-1.4                      |
|                                                                |                              |

If subcritical, use D/q = 1.2

For more information see Hoerner Chapter XIII Aircraft Components





## Cylinder Drag is R<sub>e</sub> - dependent





#### Approximate Flap Drag



#### **Detailed Flap Drag**

Two components

- -due to separated flow
- -due to change in span loading

Flap drag due to separated flow

$$\Delta C_{D_{flaps}} \!=\! F_{flap}\!\left(\!\frac{c_{flap}}{c}\!\right)\!\!\left(\!\frac{S_{flapped}}{S_{ref}}\!\right)\!\!\left(\!\delta_{flap}\!-10\right)$$

where

$$\begin{split} &\delta_{\text{flap}} = \text{flap deflection in degrees} \\ &F_{\text{flap}} = 0.0144 \text{ for plain flaps} \\ &F_{\text{flap}} = 0.0074 \text{ for slotted flaps} \\ &c_{\text{flap}} = \text{chord length of flap} \end{split}$$



Boeing 727 flaps



**ADAC** 

reraft Design & Consulting

#### Approximate Landing Gear Drag

Usually calculate landing gear drag by component, and verify with wind tunnel tests

Use this figure for ballpark check ( $\Delta C_{D_{gear}}$ referenced to wing area)



Source: Nicolai /Carichner



2016-11-17

#### Leakage and Protuberance Drag

#### Caused by

- air entering airframe in high surface pressure areas (increased momentum drag)
- air exiting airframe in low surface pressure areas (increased separation drag)

| Category                  | C <sub>DL&amp;P</sub> |  |  |  |
|---------------------------|-----------------------|--|--|--|
| Bombers or jet transports | 2-5%                  |  |  |  |
| Propeller-driven          | 5-10%                 |  |  |  |
| Current fighters          | 10-15%                |  |  |  |
| Next-gen fighters         | 5-10%                 |  |  |  |



#### Scaling Lifting Surfaces and Nacelles

- In mission sizing program some parts must be rescaled on every weight iteration
  - wing
  - horizontal tail
  - vertical tail and
  - nacelles



2016-11-17

ADAC

eraft Desian & Consulting

#### Spreadsheet Geometry Module

| Wing                  |  | Horiz Tail          |    | Vert Tail                                    |               | Pylon                                |  | Fuselage               |  | Nacelles             |  |
|-----------------------|--|---------------------|----|----------------------------------------------|---------------|--------------------------------------|--|------------------------|--|----------------------|--|
| AR <sub>wing</sub>    |  | AR <sub>ht</sub>    |    | AR <sub>vt</sub>                             |               | I <sub>pylon</sub> /d <sub>nac</sub> |  | I <sub>fuse</sub>      |  | I <sub>ref-nac</sub> |  |
| $\Lambda_{wing}$      |  | $\Lambda_{ht}$      | No | on-dimensional geometry<br>(except fuselage) |               |                                      |  | d <sub>fuse</sub>      |  | d <sub>ref-nac</sub> |  |
| $\lambda_{wing}$      |  | $\lambda_{ht}$      |    |                                              |               |                                      |  | I <sub>taper</sub>     |  |                      |  |
| t/c <sub>wing</sub>   |  | t/c <sub>ht</sub>   |    | t/c <sub>vt</sub>                            |               |                                      |  |                        |  |                      |  |
| Swing                 |  | S <sub>ht</sub>     |    | S <sub>vt</sub>                              |               | I <sub>pylon</sub>                   |  | S <sub>wet-gross</sub> |  | I <sub>nac</sub>     |  |
| macwing               |  | mac <sub>ht</sub>   |    | mac                                          |               |                                      |  | S <sub>wet-net</sub>   |  | d <sub>nac</sub>     |  |
| C <sub>wing-sob</sub> |  | C <sub>ht-sob</sub> |    | drag k                                       | s to<br>Duilo | r input to<br>dup                    |  |                        |  |                      |  |
| t <sub>wing-sob</sub> |  | t <sub>ht-sob</sub> |    | ι <sub>vt-sob</sub>                          |               | •                                    |  |                        |  |                      |  |
| A <sub>wing-sob</sub> |  | A <sub>ht-sob</sub> |    | A <sub>vt-sob</sub>                          |               |                                      |  |                        |  |                      |  |
| S <sub>wing-wet</sub> |  | S <sub>ht-wet</sub> |    | S <sub>vt-wet</sub>                          |               |                                      |  |                        |  |                      |  |





## Zero-Lift Drag Module

| Component                                                                                                                                                                                                                                                                                        | S <sub>wet</sub> | S <sub>xs</sub> | I <sub>ref</sub> | R | C <sub>f</sub> | FF | Q | D/q<br>S <sub>xs</sub> | D/q | ΔC <sub>D0</sub>  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------|------------------|---|----------------|----|---|------------------------|-----|-------------------|
| Wing                                                                                                                                                                                                                                                                                             |                  |                 |                  |   |                |    |   |                        |     |                   |
| Horiz. Tail                                                                                                                                                                                                                                                                                      |                  |                 |                  |   |                |    |   |                        |     |                   |
| Vert Tail                                                                                                                                                                                                                                                                                        |                  |                 |                  |   |                |    |   |                        |     |                   |
| Pylons                                                                                                                                                                                                                                                                                           |                  |                 |                  |   |                |    |   |                        |     |                   |
| Fuselage                                                                                                                                                                                                                                                                                         |                  |                 |                  |   |                |    |   |                        |     |                   |
| Nacelles                                                                                                                                                                                                                                                                                         |                  |                 |                  |   |                |    |   |                        |     |                   |
| Landing gear                                                                                                                                                                                                                                                                                     |                  |                 |                  |   |                |    |   |                        |     |                   |
| Flaps+slats                                                                                                                                                                                                                                                                                      |                  |                 |                  |   |                |    |   |                        |     |                   |
| Total                                                                                                                                                                                                                                                                                            |                  |                 |                  |   |                |    |   |                        |     | ΣΔC <sub>D0</sub> |
| $S_{wet}$ = wetted area $S_{xs}$ = cross-section area $I_{ref}$ = reference length R = Reynolds number $C_f$ = skin friction coeff Q = interference factor FF = form factor D/q = equivalent flat plate area $\Delta C_{D_x}$ = $(S_{wet} C_f Q FE)/S_{ref}$ or $\Delta C_{D_x}$ = $D/q S_{ref}$ |                  |                 |                  |   |                |    |   |                        |     |                   |

1

ADAC

Aircraft Design & Consulting

#### Often ignored in conceptual design

- Strong function of c.g. location
- Consists of
  - Drag of deflected elevator
  - Additional C<sub>Di</sub> due to additional wing lift

#### Trim Drag



Effect of Relaxed Static Stability on L1011 Range Factor (NASA CR-3586)

2016-11-17

ADAC Aircraft Design & Consulting High Lift Systems Zero-Lift Drag  $C_{D_0}$ Drag due to Lift  $C_{D_i}$ Wave Drag due to Volume  $C_{D_0}$ Wave Drag due to Lift  $C_{D_w}$ 





ADAC

#### Drag due to Lift

Drag due to lift = Incompressible drag due to lift + Wave drag due to lift

*K* includes both subsonic and supersonic drag due to lift and is a function of Mach number

$$C_{D_{lift}} = C_{D_i} + (C_{D_w})_{lift}$$
$$= \frac{1}{\pi A e} C_L^2 + (C_{D_w})_{lift}$$
$$= K C_L^2$$

where K = Drag due to lift factor



#### Estimating Oswald Efficiency Factor, e

Estimate based on aspect ratio, A, and leading edge sweep,  $\Lambda_{le}$ For straight wing aircraft:  $e = 1.78 (1 - 0.045 A^{0.68}) - 0.64$ For swept wing aircraft for which  $\Lambda_{le} > 30$  deg:  $e = 4.61 (1 - 0.045 A^{0.68}) (\cos \Lambda_{le})^{0.15} - 3.1$ 

For  $0 < \Lambda_{le} < 30 \text{ deg}$ , use linear interpolation between values of both equations

For high aspect ratio wings, use Shevell method (discussed later)





Avro Vulcan



#### **Oswald Efficiency Factor for Airliners**

- Uses C<sub>DP</sub> as a surrogate for d<sub>fuse</sub>/b
- As d<sub>fuse</sub>/b increases, spanwise lift distribution is less elliptical

2016-11-17



ADAC

ircraft Desian & Consultina

#### **Estimation of Oswald Efficiency Factor**



2016-11-17

#### **Caveat for Oswald Efficiency Factor Chart**

- In Raymer's analysis, all polars are assumed symmetric  $(C_D = C_{D_0} + K C_L^2)$
- Values of e using Raymer analysis are only valid for C<sub>Lmin</sub> = 0 (white circles on previous chart)





41

ADAC

craft Desian & Consultin

High Lift Systems Zero-Lift Drag C<sub>Do</sub> Drag due to Lift C<sub>Di</sub> Wave Drag due to Volume C<sub>D0supersonic</sub> Wave Drag due to Lift C<sub>Dw</sub>



2016-11-17



ADAC

#### Sears-Haack Body

• Minimum transonic wave drag for given volume





# Area Ruling





2016-11-17



#### **Transonic Area Ruling Simplified**

Positive pressure on forward-facing wing surface increases drag

> Positive pressure on aft-facing area of fuselage reduces drag



Negative pressure on aft-facing wing surface increases drag

Negative pressure on forward-facing area of fuselage reduces drag

2016-11-17

45

ADAC

rcraft Design & Consulting

### **Boeing Transonic Airliner**

- Difficult and expensive to manufacture
- Inefficient seating
- Small reduction in flight time
- Small gain in aircraft and crew utilization
- Small gain in M L/D





2016-11-17

## A380 Underwing Fairing





#### Area Ruling 747-200 vs -400



OML of extended upper cabin smoothed out area distribution and reduced zero-lift transonic drag







ADAC

eraft Desian & Consultin

High Lift Systems Zero-Lift Drag  $C_{D_0}$ Drag due to Lift  $C_{D_i}$ Wave Drag due to Volume  $C_{D_0}$ Wave Drag due to Lift  $C_{D_w}$ 



2016-11-17



ADAC

## Anti-shock Bodies Eliminate Wing Shock

- Also called Whitcomb fairings or Küchemann carrots
- Led to development of supercritical airfoil sections







**ADAC** 

eraft Desian & Consultin

#### Küchemann Carrots on Convair 990

- Competed with B707 and DC-8
- First flight: January 1961
- Production run: 37







**ADAC** 

## Flow Over Wing At Increasing Mach Number



2016-11-17

52

## $C_D$ vs Mach No. at Fixed $C_L$



2016-11-17

Aircraft Design & Consulting

#### Generation of Drag Map



Mach number at which drag rise occurs (based on  $\Delta C_{D} = 0.0014)$ 

Assume  $M_{DD} = M_{DIV} + 0.02$ where  $M_{DD}$  is defined at ΔC<sub>D</sub> =0.0020

#### **Empirical Estimate of Drag Rise**

**Power function**  $\bullet$ 

> – Meets Boeing definition of MDD when  $\Delta C_{D_C} = 0.0020$

$$(M_{DD})_{Douglas} - (M_{DD})_{Boeing} = 0.7$$



2016-11-17

Aircraft Design & Consulting

ADAC

## Alternative Method of M<sub>DD</sub> Estimation

Empirical Korn Equation applied to airfoil section

$$M_{DD} = \frac{k_a}{\cos\left(\Lambda_{\frac{c}{2}}\right)} - \frac{\frac{t}{c}}{\cos^2\left(\Lambda_{\frac{c}{2}}\right)} - \frac{C_1}{10\cos^3\left(\Lambda_{\frac{c}{2}}\right)} - 0.01 \longleftarrow$$

where

 $k_a$  = technology factor

(=0.87 for NACA 6-series)

(=0.95 for supercritical airfoil)

For wing, divide into sections and average results

Modified from Douglas definition of  $dC_D/dM = 0.10$  to Boeing definition of  $\Delta C_D = 0.0020$ for this drag rise curve

For this approximation, use average values for whole wing

ADAC

raft Desian & Consultin

2016-11-17

### **Empirical Estimate of DC-10 Drag Map**



2016-11-17

57

## DC-9 Drag Plot



## Comparative Drag Plots



2016-11-17

59

**ADAC** 

Aircraft Design & Consulting

#### 737-800 Drag vs. Mach Number





### DC-9 ML/D vs CL

- DC-9 airfoil is not supercritical
- (M L/D)<sub>max</sub> occurs at about M = 0.75
- $(M L/D)_{max} = 11.5$



Source: Schaufele

**ADAC** 

Aircraft Design & Consulting



# DC-9 L/D at (M L/D)<sub>max</sub>

#### DC-10 L/D and (M L/D)



#### **Spreadsheet Prediction for DC-10**



#### **Spreadsheet Prediction for DC-10**



#### Piano Prediction for 787

Piano is European industrialgrade sizing and performance program





#### Estimation of K for Delta Wing Config.

- Chart based on wing with I.e. radius = 0.045%
- Curves for different AR are asymptotic to linear theory



Source: Shevell

ADAC

reraft Desian & Consulting

2016-11-17

68

#### Cones of Influence for AR=2 Wing



 As M increases, area of wing influenced by wingtips decreases and linear theory dominates



## Aerodynamics The End

